Fuzzy Lie Algebras
This book explores certain structures of fuzzy Lie algebras, fuzzy Lie superalgebras and fuzzy n-Lie algebras. In addition, it applies various concepts to Lie algebras and Lie superalgebras, including type-1 fuzzy sets, interval-valued fuzzy sets, intuitionistic fuzzy sets, interval-valued intuition...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Format: | Elektronisch E-Book |
| Sprache: | Englisch |
| Veröffentlicht: |
Singapore :
Springer Singapore ,
2018.
|
| Ausgabe: | 1st ed. 2018. |
| Schriftenreihe: | Infosys Science Foundation Series in Mathematical Sciences,
|
| Schlagworte: | |
| ISBN: | 9789811332210 |
| ISSN: | 2364-4036 |
| Online-Zugang: |
|
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
| LEADER | 00000nam a22000005i 4500 | ||
|---|---|---|---|
| 003 | SK-BrCVT | ||
| 005 | 20220618120948.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 181230s2018 si | s |||| 0|eng d | ||
| 020 | |a 9789811332210 | ||
| 024 | 7 | |a 10.1007/978-981-13-3221-0 |2 doi | |
| 035 | |a CVTIDW09586 | ||
| 040 | |a Springer-Nature |b eng |c CVTISR |e AACR2 | ||
| 041 | |a eng | ||
| 100 | 1 | |a Akram, Muhammad. |4 aut | |
| 245 | 1 | 0 | |a Fuzzy Lie Algebras |h [electronic resource] / |c by Muhammad Akram. |
| 250 | |a 1st ed. 2018. | ||
| 260 | 1 | |a Singapore : |b Springer Singapore , |c 2018. | |
| 300 | |a XIX, 302 p. 14 illus., 4 illus. in color. |b online resource. | ||
| 490 | 1 | |a Infosys Science Foundation Series in Mathematical Sciences, |x 2364-4036 | |
| 500 | |a Mathematics and Statistics | ||
| 505 | 0 | |a Chapter 1. Fuzzy Lie Structures -- Chapter 2. Interval-valued Fuzzy Lie Structures -- Chapter 3. Intuitionistic Fuzzy Lie Ideals -- Chapter 4. Generalized Fuzzy Lie Subalgebras -- Chapter 5. Fuzzy Lie Structures over a Fuzzy Field -- Chapter 6. Bipolar Fuzzy Lie Structures -- Chapter 7. m−Polar Fuzzy Lie Ideals of Lie Algebras -- Chapter 8. Fuzzy Soft Lie algebras -- Chapter 9. Rough Fuzzy Lie Ideals -- Chapter 10. Fuzzy n-Lie Algebras. | |
| 516 | |a text file PDF | ||
| 520 | |a This book explores certain structures of fuzzy Lie algebras, fuzzy Lie superalgebras and fuzzy n-Lie algebras. In addition, it applies various concepts to Lie algebras and Lie superalgebras, including type-1 fuzzy sets, interval-valued fuzzy sets, intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets, vague sets and bipolar fuzzy sets. The book offers a valuable resource for students and researchers in mathematics, especially those interested in fuzzy Lie algebraic structures, as well as for other scientists. Divided into 10 chapters, the book begins with a concise review of fuzzy set theory, Lie algebras and Lie superalgebras. In turn, Chap. 2 discusses several properties of concepts like interval-valued fuzzy Lie ideals, characterizations of Noetherian Lie algebras, quotient Lie algebras via interval-valued fuzzy Lie ideals, and interval-valued fuzzy Lie superalgebras. Chaps. 3 and 4 focus on various concepts of fuzzy Lie algebras, while Chap. 5 presents the concept of fuzzy Lie ideals of a Lie algebra over a fuzzy field. Chapter 6 is devoted to the properties of bipolar fuzzy Lie ideals, bipolar fuzzy Lie subsuperalgebras, bipolar fuzzy bracket product, solvable bipolar fuzzy Lie ideals and nilpotent bipolar fuzzy Lie ideals. Chap. 7 deals with the properties of m-polar fuzzy Lie subalgebras and m-polar fuzzy Lie ideals, while Chap. 8 addresses concepts like soft intersection Lie algebras and fuzzy soft Lie algebras. Chap. 9 deals with rough fuzzy Lie subalgebras and rough fuzzy Lie ideals, and lastly, Chap. 10 investigates certain properties of fuzzy subalgebras and ideals of n-ary Lie algebras. | ||
| 650 | 0 | |a Algebra. | |
| 650 | 0 | |a Mathematical logic. | |
| 856 | 4 | 0 | |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-981-13-3221-0 |y Vzdialený prístup pre registrovaných používateľov |
| 910 | |b ZE06866 | ||
| 919 | |a 978-981-13-3221-0 | ||
| 974 | |a andrea.lebedova |f Elektronické zdroje | ||
| 992 | |a SUD | ||
| 999 | |c 276027 |d 276027 | ||

