Fuzzy Lie Algebras

This book explores certain structures of fuzzy Lie algebras, fuzzy Lie superalgebras and fuzzy n-Lie algebras. In addition, it applies various concepts to Lie algebras and Lie superalgebras, including type-1 fuzzy sets, interval-valued fuzzy sets, intuitionistic fuzzy sets, interval-valued intuition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Akram, Muhammad (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Singapore : Springer Singapore , 2018.
Ausgabe:1st ed. 2018.
Schriftenreihe:Infosys Science Foundation Series in Mathematical Sciences,
Schlagworte:
ISBN:9789811332210
ISSN:2364-4036
Online-Zugang: Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618120948.0
007 cr nn 008mamaa
008 181230s2018 si | s |||| 0|eng d
020 |a 9789811332210 
024 7 |a 10.1007/978-981-13-3221-0  |2 doi 
035 |a CVTIDW09586 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Akram, Muhammad.  |4 aut 
245 1 0 |a Fuzzy Lie Algebras  |h [electronic resource] /  |c by Muhammad Akram. 
250 |a 1st ed. 2018. 
260 1 |a Singapore :  |b Springer Singapore ,  |c 2018. 
300 |a XIX, 302 p. 14 illus., 4 illus. in color.  |b online resource. 
490 1 |a Infosys Science Foundation Series in Mathematical Sciences,  |x 2364-4036 
500 |a Mathematics and Statistics  
505 0 |a Chapter 1. Fuzzy Lie Structures -- Chapter 2. Interval-valued Fuzzy Lie Structures -- Chapter 3. Intuitionistic Fuzzy Lie Ideals -- Chapter 4. Generalized Fuzzy Lie Subalgebras -- Chapter 5. Fuzzy Lie Structures over a Fuzzy Field -- Chapter 6. Bipolar Fuzzy Lie Structures -- Chapter 7. m−Polar Fuzzy Lie Ideals of Lie Algebras -- Chapter 8. Fuzzy Soft Lie algebras -- Chapter 9. Rough Fuzzy Lie Ideals -- Chapter 10. Fuzzy n-Lie Algebras. 
516 |a text file PDF 
520 |a This book explores certain structures of fuzzy Lie algebras, fuzzy Lie superalgebras and fuzzy n-Lie algebras. In addition, it applies various concepts to Lie algebras and Lie superalgebras, including type-1 fuzzy sets, interval-valued fuzzy sets, intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets, vague sets and bipolar fuzzy sets. The book offers a valuable resource for students and researchers in mathematics, especially those interested in fuzzy Lie algebraic structures, as well as for other scientists. Divided into 10 chapters, the book begins with a concise review of fuzzy set theory, Lie algebras and Lie superalgebras. In turn, Chap. 2 discusses several properties of concepts like interval-valued fuzzy Lie ideals, characterizations of Noetherian Lie algebras, quotient Lie algebras via interval-valued fuzzy Lie ideals, and interval-valued fuzzy Lie superalgebras. Chaps. 3 and 4 focus on various concepts of fuzzy Lie algebras, while Chap. 5 presents the concept of fuzzy Lie ideals of a Lie algebra over a fuzzy field. Chapter 6 is devoted to the properties of bipolar fuzzy Lie ideals, bipolar fuzzy Lie subsuperalgebras, bipolar fuzzy bracket product, solvable bipolar fuzzy Lie ideals and nilpotent bipolar fuzzy Lie ideals. Chap. 7 deals with the properties of m-polar fuzzy Lie subalgebras and m-polar fuzzy Lie ideals, while Chap. 8 addresses concepts like soft intersection Lie algebras and fuzzy soft Lie algebras. Chap. 9 deals with rough fuzzy Lie subalgebras and rough fuzzy Lie ideals, and lastly, Chap. 10 investigates certain properties of fuzzy subalgebras and ideals of n-ary Lie algebras. 
650 0 |a Algebra. 
650 0 |a Mathematical logic. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-981-13-3221-0  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE06866 
919 |a 978-981-13-3221-0 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 276027  |d 276027