Mixed-Effects Regression Models in Linguistics

When data consist of grouped observations or clusters, and there is a risk that measurements within the same group are not independent, group-specific random effects can be added to a regression model in order to account for such within-group associations. Regression models that contain such group-s...

Celý popis

Uložené v:
Podrobná bibliografia
Médium: Elektronický zdroj E-kniha
Jazyk:English
Vydavateľské údaje: Cham : Springer International Publishing, 2018.
Vydanie:1st ed. 2018.
Edícia:Quantitative Methods in the Humanities and Social Sciences,
Predmet:
ISBN:9783319698304
ISSN:2199-0956
On-line prístup: Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618120914.0
007 cr nn 008mamaa
008 180207s2018 gw | s |||| 0|eng d
020 |a 9783319698304 
024 7 |a 10.1007/978-3-319-69830-4  |2 doi 
035 |a CVTIDW11692 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
245 1 0 |a Mixed-Effects Regression Models in Linguistics  |h [electronic resource] /  |c edited by Dirk Speelman, Kris Heylen, Dirk Geeraerts. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a VII, 146 p.  |b online resource. 
490 1 |a Quantitative Methods in the Humanities and Social Sciences,  |x 2199-0956 
500 |a Mathematics and Statistics  
505 0 |a Chapter 1. Introduction -- Chapter 2. Mixed Models with Emphasis on Large Data Sets -- Chapter 3. The L2 Impact on Learning L3 Dutch: The L2 Distance Effect Job -- Chapter 4. Autocorrelated Errors in Experimental Data in the Language Sciences: Some Solutions Offered by Generalized Additive Mixed Models -- Chapter 5. Border Effects Among Catalan Dialects -- Chapter 6. Evaluating Logistic Mixed-Effects Models of Corpus-Linguistic Data in Light of Lexical Diffusion -- Chapter 7. (Non)metonymic Expressions for Government in Chinese: A Mixed-Effects Logistic Regression Analysis. 
516 |a text file PDF 
520 |a When data consist of grouped observations or clusters, and there is a risk that measurements within the same group are not independent, group-specific random effects can be added to a regression model in order to account for such within-group associations. Regression models that contain such group-specific random effects are called mixed-effects regression models, or simply mixed models. Mixed models are a versatile tool that can handle both balanced and unbalanced datasets and that can also be applied when several layers of grouping are present in the data; these layers can either be nested or crossed. In linguistics, as in many other fields, the use of mixed models has gained ground rapidly over the last decade. This methodological evolution enables us to build more sophisticated and arguably more realistic models, but, due to its technical complexity, also introduces new challenges. This volume brings together a number of promising new evolutions in the use of mixed models in linguistics, but also addresses a number of common complications, misunderstandings, and pitfalls. Topics that are covered include the use of huge datasets, dealing with non-linear relations, issues of cross-validation, and issues of model selection and complex random structures. The volume features examples from various subfields in linguistics. The book also provides R code for a wide range of analyses. 
650 0 |a Statistics . 
650 0 |a Semantics. 
650 0 |a Syntax. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-69830-4  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE08972 
919 |a 978-3-319-69830-4 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 275922  |d 275922