Functional Analysis An Introductory Course /

This concise text provides a gentle introduction to functional analysis. Chapters cover essential topics such as special spaces, normed spaces, linear functionals, and Hilbert spaces. Numerous examples and counterexamples aid in the understanding of key concepts, while exercises at the end of each c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Ovchinnikov, Sergei (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Cham : Springer International Publishing, 2018.
Ausgabe:1st ed. 2018.
Schriftenreihe:Universitext,
Schlagworte:
ISBN:9783319915128
ISSN:0172-5939
Online-Zugang: Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618120910.0
007 cr nn 008mamaa
008 180609s2018 gw | s |||| 0|eng d
020 |a 9783319915128 
024 7 |a 10.1007/978-3-319-91512-8  |2 doi 
035 |a CVTIDW09526 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Ovchinnikov, Sergei.  |4 aut 
245 1 0 |a Functional Analysis  |h [electronic resource] :  |b An Introductory Course /  |c by Sergei Ovchinnikov. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XII, 205 p. 13 illus.  |b online resource. 
490 1 |a Universitext,  |x 0172-5939 
500 |a Mathematics and Statistics  
505 0 |a Preface -- 1. Preliminaries -- 2. Metric Spaces -- 3. Special Spaces -- 4. Normed Spaces -- 5. Linear Functionals -- 6. Fundamental Theorems -- 7. Hilbert Spaces -- A. Hilbert Spaces L2(J) -- References -- Index. 
516 |a text file PDF 
520 |a This concise text provides a gentle introduction to functional analysis. Chapters cover essential topics such as special spaces, normed spaces, linear functionals, and Hilbert spaces. Numerous examples and counterexamples aid in the understanding of key concepts, while exercises at the end of each chapter provide ample opportunities for practice with the material. Proofs of theorems such as the Uniform Boundedness Theorem, the Open Mapping Theorem, and the Closed Graph Theorem are worked through step-by-step, providing an accessible avenue to understanding these important results. The prerequisites for this book are linear algebra and elementary real analysis, with two introductory chapters providing an overview of material necessary for the subsequent text. Functional Analysis offers an elementary approach ideal for the upper-undergraduate or beginning graduate student. Primarily intended for a one-semester introductory course, this text is also a perfect resource for independent study or as the basis for a reading course. . 
650 0 |a Functional analysis. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-91512-8  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE06806 
919 |a 978-3-319-91512-8 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 275910  |d 275910