Fractional Dynamic Calculus and Fractional Dynamic Equations on Time Scales

Pedagogically organized, this monograph introduces fractional calculus and fractional dynamic equations on time scales in relation to mathematical physics applications and problems. Beginning with the definitions of forward and backward jump operators, the book builds from Stefan Hilger's basic...

Full description

Saved in:
Bibliographic Details
Main Author: Georgiev, Svetlin G. (Author)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing, 2018.
Edition:1st ed. 2018.
Subjects:
ISBN:9783319739540
Online Access: Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618120904.0
007 cr nn 008mamaa
008 180412s2018 gw | s |||| 0|eng d
020 |a 9783319739540 
024 7 |a 10.1007/978-3-319-73954-0  |2 doi 
035 |a CVTIDW09453 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Georgiev, Svetlin G.  |4 aut 
245 1 0 |a Fractional Dynamic Calculus and Fractional Dynamic Equations on Time Scales  |h [electronic resource] /  |c by Svetlin G. Georgiev. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a VIII, 360 p.  |b online resource. 
500 |a Mathematics and Statistics  
505 0 |a 1. Elements of the Time Scale Calculus -- 2. The Laplace Transform on Time Scales -- 3. The Convolution on Time Scales -- 4. The Riemann-Liouville Fractional D-Integral and the Riemann-Liouville Fractional D-Derivative on Time Scales -- 5. Cauchy Type Problem with the Riemann-Liouville Fractional D-Derivative -- 6. Riemann-Liouville Fractional Dynamic Equations with Constant Coefficients -- 7. The Caputo Fractional D-Derivative on Time Scales -- 8. Cauchy Type Problem with the Caputo Fractional D-Derivative -- 9. Caputo Fractional Dynamic Equations with Constant Coefficients -- Appendix: The Gamma Function -- Appendix: The Gamma Function -- Index. 
516 |a text file PDF 
520 |a Pedagogically organized, this monograph introduces fractional calculus and fractional dynamic equations on time scales in relation to mathematical physics applications and problems. Beginning with the definitions of forward and backward jump operators, the book builds from Stefan Hilger's basic theories on time scales and examines recent developments within the field of fractional calculus and fractional equations. Useful tools are provided for solving differential and integral equations as well as various problems involving special functions of mathematical physics and their extensions and generalizations in one and more variables. Much discussion is devoted to Riemann-Liouville fractional dynamic equations and Caputo fractional dynamic equations. Intended for use in the field and designed for students without an extensive mathematical background, this book is suitable for graduate courses and researchers looking for an introduction to fractional dynamic calculus and equations on time scales. . 
650 0 |a Calculus. 
650 0 |a Mathematical physics. 
650 0 |a Integral transforms. 
650 0 |a Operational calculus. 
650 0 |a Measure theory. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-73954-0  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE06733 
919 |a 978-3-319-73954-0 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 275890  |d 275890