Function Spaces with Uniform, Fine and Graph Topologies

This book presents a comprehensive account of the theory of spaces of continuous functions under uniform, fine and graph topologies. Besides giving full details of known results, an attempt is made to give generalizations wherever possible, enriching the existing literature. The goal of this monogra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: McCoy, Robert A. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Cham : Springer International Publishing, 2018.
Ausgabe:1st ed. 2018.
Schriftenreihe:SpringerBriefs in Mathematics,
Schlagworte:
ISBN:9783319770543
ISSN:2191-8198
Online-Zugang: Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618120851.0
007 cr nn 008mamaa
008 180421s2018 gw | s |||| 0|eng d
020 |a 9783319770543 
024 7 |a 10.1007/978-3-319-77054-3  |2 doi 
035 |a CVTIDW09524 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a McCoy, Robert A.  |4 aut 
245 1 0 |a Function Spaces with Uniform, Fine and Graph Topologies  |h [electronic resource] /  |c by Robert A. McCoy, Subiman Kundu, Varun Jindal. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XVIII, 106 p.  |b online resource. 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
500 |a Mathematics and Statistics  
505 0 |a Preface -- Introduction -- 1 Preliminaries -- 2 Metrizability and Completeness Properties of Cτ (X, Y ) for τ = d, f, g -- 3 Cardinal Functions and Countability Properties -- 4 Connectedness and Path Connectedness of Cτ (X, Y ) for a Normed Linear Space Y , where τ = d, f, g. - 5 Compactness in Cτ (X, Y ) for τ = d, f, g. - 6 Spaces of Homeomorphisms -- Bibliography -- List of Symbols -- Index. 
516 |a text file PDF 
520 |a This book presents a comprehensive account of the theory of spaces of continuous functions under uniform, fine and graph topologies. Besides giving full details of known results, an attempt is made to give generalizations wherever possible, enriching the existing literature. The goal of this monograph is to provide an extensive study of the uniform, fine and graph topologies on the space C(X,Y) of all continuous functions from a Tychonoff space X to a metric space (Y,d); and the uniform and fine topologies on the space H(X) of all self-homeomorphisms on a metric space (X,d). The subject matter of this monograph is significant from the theoretical viewpoint, but also has applications in areas such as analysis, approximation theory and differential topology. Written in an accessible style, this book will be of interest to researchers as well as graduate students in this vibrant research area. 
650 0 |a Topology. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-77054-3  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE06804 
919 |a 978-3-319-77054-3 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 275852  |d 275852