The Mathematics of India Concepts, Methods, Connections /

This book identifies three of the exceptionally fruitful periods of the millennia-long history of the mathematical tradition of India: the very beginning of that tradition in the construction of the now-universal system of decimal numeration and of a framework for planar geometry; a classical period...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Divakaran, P. P. (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Singapore : Springer Singapore , 2018.
Vydání:1st ed. 2018.
Edice:Sources and Studies in the History of Mathematics and Physical Sciences,
Témata:
ISBN:9789811317743
ISSN:2196-8810
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618120836.0
007 cr nn 008mamaa
008 180919s2018 si | s |||| 0|eng d
020 |a 9789811317743 
024 7 |a 10.1007/978-981-13-1774-3  |2 doi 
035 |a CVTIDW11464 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Divakaran, P. P.  |4 aut 
245 1 4 |a The Mathematics of India  |h [electronic resource] :  |b Concepts, Methods, Connections /  |c by P. P. Divakaran. 
250 |a 1st ed. 2018. 
260 1 |a Singapore :  |b Springer Singapore ,  |c 2018. 
300 |a XI, 441 p.  |b online resource. 
490 1 |a Sources and Studies in the History of Mathematics and Physical Sciences,  |x 2196-8810 
500 |a Mathematics and Statistics  
505 0 |a Chapter 1. Background: Culture and Language -- Chapter 2. Vedic Geometry -- Chapter 3. Antecedents? Mathematics in the Indus Valley -- Chapter 4. Decimal Numbers -- Chapter 5. Numbers in the Vedic Literature -- Chapter 6. From 500 BCE to 500 CE -- Chapter 7. The Mathematics of the Ganitapada -- Chapter 8. From Brahmagupta to Bhaskara II to Narayana -- Chapter 9. The Nila Phenomenon -- Chapter 10. Nila Mathematics (General Survey) -- Chapter 11. The pi-series -- Chapter 12. The Sine and Cosine Series -- Chapter 13. The pi-Series Revisited: Algebra in Analysis -- Chapter 14. What is Indian about the Mathematics of India? -- Chapter 15. What is Indian . . .? The Question of Proofs -- Chapter 16. Upasamhara. 
516 |a text file PDF 
520 |a This book identifies three of the exceptionally fruitful periods of the millennia-long history of the mathematical tradition of India: the very beginning of that tradition in the construction of the now-universal system of decimal numeration and of a framework for planar geometry; a classical period inaugurated by Aryabhata's invention of trigonometry and his enunciation of the principles of discrete calculus as applied to trigonometric functions; and a final phase that produced, in the work of Madhava, a rigorous infinitesimal calculus of such functions. The main highlight of this book is a detailed examination of these critical phases and their interconnectedness, primarily in mathematical terms but also in relation to their intellectual, cultural and historical contexts. Recent decades have seen a renewal of interest in this history, as manifested in the publication of an increasing number of critical editions and translations of texts, as well as in an informed analytic interpretation of their content by the scholarly community. The result has been the emergence of a more accurate and balanced view of the subject, and the book has attempted to take an account of these nascent insights. As part of an endeavour to promote the new awareness, a special attention has been given to the presentation of proofs of all significant propositions in modern terminology and notation, either directly transcribed from the original texts or by collecting together material from several texts. 
650 0 |a Mathematics. 
650 0 |a History. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-981-13-1774-3  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE08744 
919 |a 978-981-13-1774-3 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 275802  |d 275802