Machine Learning Techniques for Online Social Networks

The book covers tools in the study of online social networks such as machine learning techniques, clustering, and deep learning. A variety of theoretical aspects, application domains, and case studies for analyzing social network data are covered. The aim is to provide new perspectives on utilizing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Cham : Springer International Publishing, 2018.
Ausgabe:1st ed. 2018.
Schriftenreihe:Lecture Notes in Social Networks,
Schlagworte:
ISBN:9783319899329
ISSN:2190-5428
Online-Zugang: Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618120834.0
007 cr nn 008mamaa
008 180530s2018 gw | s |||| 0|eng d
020 |a 9783319899329 
024 7 |a 10.1007/978-3-319-89932-9  |2 doi 
035 |a CVTIDW11296 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
245 1 0 |a Machine Learning Techniques for Online Social Networks  |h [electronic resource] /  |c edited by Tansel Özyer, Reda Alhajj. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a VIII, 236 p. 102 illus., 85 illus. in color.  |b online resource. 
490 1 |a Lecture Notes in Social Networks,  |x 2190-5428 
500 |a Social Sciences  
505 0 |a Chapter1. Acceleration of Functional Cluster Extraction and Analysis of Cluster Affinity -- Chapter2. Delta-Hyperbolicity and the Core-Periphery Structure in Graphs -- Chapter3. A Framework for OSN Performance Evaluation Studies -- Chapter4. On The Problem of Multi-Staged Impression Allocation in Online Social Networks -- Chapter5. Order-of-Magnitude Popularity Estimation of Pirated Content -- Chapter6. Learning What to Share in Online Social Networks using Deep Reinforcement Learning -- Chapter7. Centrality and Community Scoring Functions in Incomplete Networks: Their Sensitivity, Robustness and Reliability -- Chapter8. Ameliorating Search Results Recommendation System based on K-means Clustering Algorithm and Distance Measurements -- Chapter9. Dynamics of large scale networks following a merger -- Chapter10. Cloud Assisted Personal Online Social Network -- Chapter11. Text-Based Analysis of Emotion by Considering Tweets. 
516 |a text file PDF 
520 |a The book covers tools in the study of online social networks such as machine learning techniques, clustering, and deep learning. A variety of theoretical aspects, application domains, and case studies for analyzing social network data are covered. The aim is to provide new perspectives on utilizing machine learning and related scientific methods and techniques for social network analysis. Machine Learning Techniques for Online Social Networks will appeal to researchers and students in these fields. . 
650 0 |a Social sciences-Data processing. 
650 0 |a Social sciences-Computer programs. 
650 0 |a Data mining. 
650 0 |a Social media. 
650 0 |a Artificial intelligence. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-89932-9  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE08576 
919 |a 978-3-319-89932-9 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 275795  |d 275795