Machine Learning at the Belle II Experiment The Full Event Interpretation and Its Validation on Belle Data /

This book explores how machine learning can be used to improve the efficiency of expensive fundamental science experiments. The first part introduces the Belle and Belle II experiments, providing a detailed description of the Belle to Belle II data conversion tool, currently used by many analysts. T...

Celý popis

Uložené v:
Podrobná bibliografia
Hlavný autor: Keck, Thomas (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:English
Vydavateľské údaje: Cham : Springer International Publishing, 2018.
Vydanie:1st ed. 2018.
Edícia:Springer Theses, Recognizing Outstanding Ph.D. Research,
Predmet:
ISBN:9783319982496
ISSN:2190-5053
On-line prístup: Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618120831.0
007 cr nn 008mamaa
008 181229s2018 gw | s |||| 0|eng d
020 |a 9783319982496 
024 7 |a 10.1007/978-3-319-98249-6  |2 doi 
035 |a CVTIDW11291 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Keck, Thomas.  |4 aut 
245 1 0 |a Machine Learning at the Belle II Experiment  |h [electronic resource] :  |b The Full Event Interpretation and Its Validation on Belle Data /  |c by Thomas Keck. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XI, 174 p. 84 illus., 16 illus. in color.  |b online resource. 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
500 |a Physics and Astronomy  
505 0 |a Introduction -- From Belle to Belle II -- Multivariate Analysis Algorithms -- Full Event Interpretation -- B tau mu -- Conclusion. 
516 |a text file PDF 
520 |a This book explores how machine learning can be used to improve the efficiency of expensive fundamental science experiments. The first part introduces the Belle and Belle II experiments, providing a detailed description of the Belle to Belle II data conversion tool, currently used by many analysts. The second part covers machine learning in high-energy physics, discussing the Belle II machine learning infrastructure and selected algorithms in detail. Furthermore, it examines several machine learning techniques that can be used to control and reduce systematic uncertainties. The third part investigates the important exclusive B tagging technique, unique to physics experiments operating at the Υ resonances, and studies in-depth the novel Full Event Interpretation algorithm, which doubles the maximum tag-side efficiency of its predecessor. The fourth part presents a complete measurement of the branching fraction of the rare leptonic B decay "B→tau nu", which is used to validate the algorithms discussed in previous parts. 
650 0 |a Elementary particles (Physics). 
650 0 |a Quantum field theory. 
650 0 |a Artificial intelligence. 
650 0 |a Sociophysics. 
650 0 |a Econophysics. 
650 0 |a Physical measurements. 
650 0 |a Measurement . 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-98249-6  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE08571 
919 |a 978-3-319-98249-6 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 275787  |d 275787