IMPROVE - Innovative Modelling Approaches for Production Systems to Raise Validatable Efficiency Intelligent Methods for the Factory of the Future /

This open access work presents selected results from the European research and innovation project IMPROVE which yielded novel data-based solutions to enhance machine reliability and efficiency in the fields of simulation and optimization, condition monitoring, alarm management, and quality predictio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Berlin, Heidelberg : Springer Berlin Heidelberg : Vieweg, 2018.
Ausgabe:1st ed. 2018.
Schriftenreihe:Technologien für die intelligente Automation, Technologies for Intelligent Automation, 8
Schlagworte:
ISBN:9783662578056
ISSN:2522-8579 ;
Online-Zugang: Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618120751.0
007 cr nn 008mamaa
008 180820s2018 gw | s |||| 0|eng d
020 |a 9783662578056 
024 7 |a 10.1007/978-3-662-57805-6  |2 doi 
035 |a CVTIDW10404 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
245 1 0 |a IMPROVE - Innovative Modelling Approaches for Production Systems to Raise Validatable Efficiency  |h [electronic resource] :  |b Intelligent Methods for the Factory of the Future /  |c edited by Oliver Niggemann, Peter Schüller. 
250 |a 1st ed. 2018. 
260 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b  Vieweg,  |c 2018. 
300 |a VII, 129 p. 52 illus., 29 illus. in color.  |b online resource. 
490 1 |a Technologien für die intelligente Automation, Technologies for Intelligent Automation,  |x 2522-8579 ;  |v 8 
500 |a Engineering  
505 0 |a Concept and Implementation of a Software Architecture for Unifying Data Transfer in Automated Production Systems -- Social Science Contributions to Engineering Projects: Looking Beyond Explicit Knowledge Through the Lenses of Social Theory -- Enable learning of Hybrid Timed Automata in Absence of Discrete Events through Self-Organizing Maps -- Anomaly Detection and Localization for Cyber-Physical Production Systems with Self-Organizing Maps -- A Sampling-Based Method for Robust and Efficient Fault Detection in Industrial Automation Processes -- Validation of similarity measures for industrial alarm flood analysis -- Concept for Alarm Flood Reduction with Bayesian Networks by Identifying the Root Cause. 
506 0 |a Open Access 
516 |a text file PDF 
520 |a This open access work presents selected results from the European research and innovation project IMPROVE which yielded novel data-based solutions to enhance machine reliability and efficiency in the fields of simulation and optimization, condition monitoring, alarm management, and quality prediction. The Editors Prof. Dr. Oliver Niggemann is Professor for Artificial Intelligence in Automation. His research interests are in the fields of machine learning and data analysis for Cyber-Physical Systems and in the fields of planning and diagnosis of distributed systems. He is a board member of the research institute inIT and deputy director at the Fraunhofer Application Center Industrial Automation INA located in Lemgo. Dr. Peter Schüller is postdoctoral researcher at Technische Universität Wien. His research interests are hybrid reasoning systems that combine Knowledge Representation and Machine Learning and applications in the fields of Cyber-Physical systems and Natural Language Processing. 
650 0 |a Quality control. 
650 0 |a Reliability. 
650 0 |a Industrial safety. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 0 |a Input-output equipment (Computers). 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-662-57805-6  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE07684 
919 |a 978-3-662-57805-6 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 275662  |d 275662