Exercises and Problems in Mathematical Methods of Physics

This book presents exercises and problems in the mathematical methods of physics with the aim of offering undergraduate students an alternative way to explore and fully understand the mathematical notions on which modern physics is based. The exercises and problems are proposed not in a random order...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Cicogna, Giampaolo (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Edice:Undergraduate Lecture Notes in Physics,
Témata:
ISBN:9783319761657
ISSN:2192-4791
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618120740.0
007 cr nn 008mamaa
008 180321s2018 gw | s |||| 0|eng d
020 |a 9783319761657 
024 7 |a 10.1007/978-3-319-76165-7  |2 doi 
035 |a CVTIDW09164 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Cicogna, Giampaolo.  |4 aut 
245 1 0 |a Exercises and Problems in Mathematical Methods of Physics  |h [electronic resource] /  |c by Giampaolo Cicogna. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a X, 182 p. 8 illus.  |b online resource. 
490 1 |a Undergraduate Lecture Notes in Physics,  |x 2192-4791 
500 |a Physics and Astronomy  
505 0 |a 1 Hilbert spaces -- 1.1 Complete sets, Fourier expansions -- 1.1.1 Preliminary notions. Subspaces. Complete sets -- 1.1.2 Fourier expansions -- 1.1.3 Harmonic functions; Dirichlet and Neumann Problems -- 1.2 Linear operators -- 1.2.1 Linear operators defined giving T en = vn, and related Problems -- 1.2.2 Operators of the form T x = v(w;x) and T x = ån vn(wn;x) -- 1.2.3 Operators of the form T f (x) = j(x) f (x) -- 1.2.4 Problems involving differential operators -- 1.2.5 Functionals -- 1.2.6 Time evolution Problems. Heat equation -- 1.2.7 Miscellaneous Problems -- 2 Functions of a complex variable -- 2.1 Basic properties of analytic functions -- 2.2 Evaluation of integrals by complex variable methods -- 2.3 Harmonic functions and conformal mappings -- 3 Fourier and Laplace transforms. Distributions -- 3.1 Fourier transform in L1(R) and L2(R) -- 3.1.1 Basic properties and applications -- 3.1.2 Fourier transform and linear operators in L2(R) -- 3.2 Tempered distributions and Fourier transforms -- 3.2.1 General properties -- 3.2.2 Fourier transform, distributions and linear operators -- 3.2.3 Applications to ODE's and related Green functions -- 3.2.4 Applications to general linear systems and Green functions -- 3.2.5 Applications to PDE's -- 3.3 Laplace transforms -- vvi Contents -- Groups, Lie algebras, symmetries in physics -- 4.1 Basic properties of groups and representations -- 4.2 Lie groups and algebras -- 4.3 The groups SO3; SU2; SU3 -- 4.4 Other direct applications of symmetries to physics -- Answers and Solutions. . 
516 |a text file PDF 
520 |a This book presents exercises and problems in the mathematical methods of physics with the aim of offering undergraduate students an alternative way to explore and fully understand the mathematical notions on which modern physics is based. The exercises and problems are proposed not in a random order but rather in a sequence that maximizes their educational value. Each section and subsection starts with exercises based on first definitions, followed by groups of problems devoted to intermediate and, subsequently, more elaborate situations. Some of the problems are unavoidably "routine", but others bring to the forenontrivial properties that are often omitted or barely mentioned in textbooks. There are also problems where the reader is guided to obtain important results that are usually stated in textbooks without complete proofs. In all, some 350 solved problems covering all mathematical notions useful to physics are included. While the book is intended primarily for undergraduate students of physics, students of mathematics, chemistry, and engineering, as well as their teachers, will also find it of value. . 
650 0 |a Physics. 
650 0 |a Fourier analysis. 
650 0 |a Operator theory. 
650 0 |a Functions of complex variables. 
650 0 |a Integral transforms. 
650 0 |a Operational calculus. 
650 0 |a Group theory. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-76165-7  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE06444 
919 |a 978-3-319-76165-7 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 275627  |d 275627