Energy Optimization and Prediction in Office Buildings A Case Study of Office Building Design in Chile /

This book explains how energy demand and energy consumption in new buildings can be predicted and how these aspects and the resulting CO2 emissions can be reduced. It is based upon the authors' extensive research into the design and energy optimization of office buildings in Chile. The authors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Rubio-Bellido, Carlos (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Cham : Springer International Publishing, 2018.
Ausgabe:1st ed. 2018.
Schriftenreihe:SpringerBriefs in Energy,
Schlagworte:
ISBN:9783319901466
ISSN:2191-5520
Online-Zugang: Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618120705.0
007 cr nn 008mamaa
008 180420s2018 gw | s |||| 0|eng d
020 |a 9783319901466 
024 7 |a 10.1007/978-3-319-90146-6  |2 doi 
035 |a CVTIDW08911 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Rubio-Bellido, Carlos.  |4 aut 
245 1 0 |a Energy Optimization and Prediction in Office Buildings  |h [electronic resource] :  |b A Case Study of Office Building Design in Chile /  |c by Carlos Rubio-Bellido, Alexis Pérez-Fargallo, Jesús Pulido-Arcas. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a X, 78 p. 22 illus., 20 illus. in color.  |b online resource. 
490 1 |a SpringerBriefs in Energy,  |x 2191-5520 
500 |a Energy  
505 0 |a Introduction -- Research Method -- Energy Demand Analysis -- Multiple Linear Regressions -- Artificial Neural Networks -- Conclusions. 
516 |a text file PDF 
520 |a This book explains how energy demand and energy consumption in new buildings can be predicted and how these aspects and the resulting CO2 emissions can be reduced. It is based upon the authors' extensive research into the design and energy optimization of office buildings in Chile. The authors first introduce a calculation procedure that can be used for the optimization of energy parameters in office buildings, and to predict how a changing climate may affect energy demand. The prediction of energy demand, consumption and CO2 emissions is demonstrated by solving simple equations using the example of Chilean buildings, and the findings are subsequently applied to buildings around the globe. An optimization process based on Artificial Neural Networks is discussed in detail, which predicts heating and cooling energy demands, energy consumption and CO2 emissions. Taken together, these processes will show readers how to reduce energy demand, consumption and CO2 emissions associated with office buildings in the future. Readers will gain an advanced understanding of energy use in buildings and how it can be reduced. 
650 0 |a Sustainable architecture. 
650 0 |a Energy efficiency. 
650 0 |a Buildings-Design and construction. 
650 0 |a Building. 
650 0 |a Construction. 
650 0 |a Engineering, Architectural. 
650 0 |a Neural networks (Computer science) . 
650 0 |a Mathematical optimization. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-90146-6  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE06191 
919 |a 978-3-319-90146-6 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 275518  |d 275518