A Hybrid Approach for Power Plant Fault Diagnostics

This book provides a hybrid approach to fault detection and diagnostics. It presents a detailed analysis related to practical applications of the fault detection and diagnostics framework, and highlights recent findings on power plant nonlinear model identification and fault diagnostics. The effecti...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Lemma, Tamiru Alemu (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Edice:Studies in Computational Intelligence, 743
Témata:
ISBN:9783319718712
ISSN:1860-949X ;
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618120636.0
007 cr nn 008mamaa
008 171230s2018 gw | s |||| 0|eng d
020 |a 9783319718712 
024 7 |a 10.1007/978-3-319-71871-2  |2 doi 
035 |a CVTIDW10167 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Lemma, Tamiru Alemu.  |4 aut 
245 1 2 |a A Hybrid Approach for Power Plant Fault Diagnostics  |h [electronic resource] /  |c by Tamiru Alemu Lemma. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XII, 283 p. 161 illus., 138 illus. in color.  |b online resource. 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 743 
500 |a Engineering  
505 0 |a Introduction -- Literature Review -- Model Identification using Neuro-Fuzzy Approach -- Model Uncertainity, Fault Detection and Diagnostics -- Intelligent Fault Detection and Diagnostics -- Application Studies, Part-I: Model Identification and Validation -- Application Studies, Part-II: Fault Detection and Diagnostics -- Conclusion and Recommendation. 
516 |a text file PDF 
520 |a This book provides a hybrid approach to fault detection and diagnostics. It presents a detailed analysis related to practical applications of the fault detection and diagnostics framework, and highlights recent findings on power plant nonlinear model identification and fault diagnostics. The effectiveness of the methods presented is tested using data acquired from actual cogeneration and cooling plants (CCPs). The models presented were developed by applying Neuro-Fuzzy (NF) methods. The book offers a valuable resource for researchers and practicing engineers alike. 
650 0 |a Computational intelligence. 
650 0 |a Optical data processing. 
650 0 |a Power electronics. 
650 0 |a Energy systems. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-71871-2  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE07447 
919 |a 978-3-319-71871-2 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 275424  |d 275424