Dynamic Modeling of Complex Industrial Processes: Data-driven Methods and Application Research
This thesis develops a systematic, data-based dynamic modeling framework for industrial processes in keeping with the slowness principle. Using said framework as a point of departure, it then proposes novel strategies for dealing with control monitoring and quality prediction problems in industrial...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Format: | Elektronisch E-Book |
| Sprache: | Englisch |
| Veröffentlicht: |
Singapore :
Springer Singapore ,
2018.
|
| Ausgabe: | 1st ed. 2018. |
| Schriftenreihe: | Springer Theses, Recognizing Outstanding Ph.D. Research,
|
| Schlagworte: | |
| ISBN: | 9789811066771 |
| ISSN: | 2190-5053 |
| Online-Zugang: |
|
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Inhaltsangabe:
- Introduction
- Concurrent monitoring of steady state and process dynamics with SFA
- Online monitoring and diagnosis of control performance with SFA and contribution plots
- Recursive SFA algorithm and adaptive monitoring system design
- Probabilistic SFR model and its applications in dynamic quality prediction
- Improved DPLS model with temporal smoothness and its applications in dynamic quality prediction
- Nonlinear and dynamic soft sensing model based on Bayesian framework
- Summary and open problems.

