A History of Folding in Mathematics Mathematizing the Margins /

While it is well known that the Delian problems are impossible to solve with a straightedge and compass - for example, it is impossible to construct a segment whose length is the cube root of 2 with these instruments - the discovery of the Italian mathematician Margherita Beloch Piazzolla in 1934 th...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Friedman, Michael (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Edice:Science Networks. Historical Studies, 59
Témata:
ISBN:9783319724874
ISSN:1421-6329 ;
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618120526.0
007 cr nn 008mamaa
008 180525s2018 gw | s |||| 0|eng d
020 |a 9783319724874 
024 7 |a 10.1007/978-3-319-72487-4  |2 doi 
035 |a CVTIDW10081 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Friedman, Michael.  |4 aut 
245 1 2 |a A History of Folding in Mathematics  |h [electronic resource] :  |b Mathematizing the Margins /  |c by Michael Friedman. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XV, 419 p. 134 illus., 42 illus. in color.  |b online resource. 
490 1 |a Science Networks. Historical Studies,  |x 1421-6329 ;  |v 59 
500 |a Mathematics and Statistics  
505 0 |a Introduction -- From the 16th Century Onwards: Folding Polyhedra. New Epistemological Horizons? -- Prolog to the 19th Century: Accepting Folding as a Method of Inference -- The 19th Century - What Can and Cannot be (Re)presented: On Models and Kindergartens -- Towards the Axiomatization, Operationalization and Algebraization of the Fold -- The Axiomatization(s) of the Fold -- Appendix I: Margherita Beloch Piazzolla: "Alcune applicazioni del metodo del ripiegamento della carta di Sundara Row" -- Appendix II: Deleuze, Leibniz and the Unmathematical Fold -- Bibliography -- List of Figures. 
516 |a text file PDF 
520 |a While it is well known that the Delian problems are impossible to solve with a straightedge and compass - for example, it is impossible to construct a segment whose length is the cube root of 2 with these instruments - the discovery of the Italian mathematician Margherita Beloch Piazzolla in 1934 that one can in fact construct a segment of length the cube root of 2 with a single paper fold was completely ignored (till the end of the 1980s). This comes as no surprise, since with few exceptions paper folding was seldom considered as a mathematical practice, let alone as a mathematical procedure of inference or proof that could prompt novel mathematical discoveries. A few questions immediately arise: Why did paper folding become a non-instrument? What caused the marginalisation of this technique? And how was the mathematical knowledge, which was nevertheless transmitted and prompted by paper folding, later treated and conceptualised? Aiming to answer these questions, this volume provides, for the first time, an extensive historical study on the history of folding in mathematics, spanning from the 16th century to the 20th century, and offers a general study on the ways mathematical knowledge is marginalised, disappears, is ignored or becomes obsolete. In doing so, it makes a valuable contribution to the field of history and philosophy of science, particularly the history and philosophy of mathematics and is highly recommended for anyone interested in these topics. 
650 0 |a Mathematics. 
650 0 |a History. 
650 0 |a Geometry. 
650 0 |a Mathematical logic. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-72487-4  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE07361 
919 |a 978-3-319-72487-4 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 275206  |d 275206