Finite Element Concepts A Closed-Form Algebraic Development /

This text presents a highly original treatment of the fundamentals of FEM, developed using computer algebra, based on undergraduate-level engineering mathematics and the mechanics of solids. The book is divided into two distinct parts of nine chapters and seven appendices. The first chapter reviews...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Dasgupta, Gautam (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: New York, NY : Springer New York , 2018.
Ausgabe:1st ed. 2018.
Schlagworte:
ISBN:9781493974238
Online-Zugang: Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618120441.0
007 cr nn 008mamaa
008 171205s2018 xxu| s |||| 0|eng d
020 |a 9781493974238 
024 7 |a 10.1007/978-1-4939-7423-8  |2 doi 
035 |a CVTIDW09348 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Dasgupta, Gautam.  |4 aut 
245 1 0 |a Finite Element Concepts  |h [electronic resource] :  |b A Closed-Form Algebraic Development /  |c by Gautam Dasgupta. 
250 |a 1st ed. 2018. 
260 1 |a New York, NY :  |b Springer New York ,  |c 2018. 
300 |a XXXVI, 333 p. 45 illus.  |b online resource. 
500 |a Engineering  
505 0 |a 1. Bar -- 2. Trusses -- 3. 2-D Llinear Interpolation -- 4. Triangular Elements -- 5. Taig's Convex Quadrilateral Elements -- 6. Irons patch test -- 7. Eight DOFs -- 8. Incompressibility -- 9. Conclusions. 
516 |a text file PDF 
520 |a This text presents a highly original treatment of the fundamentals of FEM, developed using computer algebra, based on undergraduate-level engineering mathematics and the mechanics of solids. The book is divided into two distinct parts of nine chapters and seven appendices. The first chapter reviews the energy concepts in structural mechanics with bar problems, which is continued in the next chapter for truss analysis using Mathematica programs. The Courant and Clough triangular elements for scalar potentials and linear elasticity are covered in chapters three and four, followed by four-node elements. Chapters five and six describe Taig's isoparametric interpolants and Iron's patch test. Rayleigh vector modes, which satisfy point-wise equilibrium, are elaborated on in chapter seven along with successful patch tests in the physical (x,y) Cartesian frame. Chapter eight explains point-wise incompressibility and employs (Moore-Penrose) inversion of rectangular matrices. The final chapter analyzes patch-tests in all directions and introduces five-node elements for linear stresses. Curved boundaries and higher order stresses are addressed in closed algebraic form. Appendices give a short introduction to Mathematica, followed by truss analysis using symbolic codes that could be used in all FEM problems to assemble element matrices and solve for all unknowns. All Mathematica codes for theoretical formulations and graphics are included with extensive numerical examples. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Partial differential equations. 
650 0 |a Computer mathematics. 
650 0 |a Mechanical engineering. 
650 0 |a Civil engineering. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-1-4939-7423-8  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE06628 
919 |a 978-1-4939-7423-8 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 275069  |d 275069