Discrete Stochastic Processes and Applications

This unique text for beginning graduate students gives a self-contained introduction to the mathematical properties of stochastics and presents their applications to Markov processes, coding theory, population dynamics, and search engine design. The book is ideal for a newly designed course in an in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Collet, Jean-François (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Cham : Springer International Publishing, 2018.
Ausgabe:1st ed. 2018.
Schriftenreihe:Universitext,
Schlagworte:
ISBN:9783319740188
ISSN:0172-5939
Online-Zugang: Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618120420.0
007 cr nn 008mamaa
008 180405s2018 gw | s |||| 0|eng d
020 |a 9783319740188 
024 7 |a 10.1007/978-3-319-74018-8  |2 doi 
035 |a CVTIDW08510 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Collet, Jean-François.  |4 aut 
245 1 0 |a Discrete Stochastic Processes and Applications  |h [electronic resource] /  |c by Jean-François Collet. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XVII, 220 p. 3 illus.  |b online resource. 
490 1 |a Universitext,  |x 0172-5939 
500 |a Mathematics and Statistics  
505 0 |a Preface -- I. Markov processes -- 1. Discrete time, countable space -- 2. Linear algebra and search engines -- 3. The Poisson process -- 4. Continuous time, discrete space -- 5. Examples -- II. Entropy and applications -- 6. Prelude: a user's guide to convexity -- 7. The basic quantities of information theory -- 8. An example of application: binary coding -- A. Some useful facts from calculus -- B. Some useful facts from probability -- C. Some useful facts from linear algebra -- D. An arithmetical lemma -- E. Table of exponential families -- References -- Index. 
516 |a text file PDF 
520 |a This unique text for beginning graduate students gives a self-contained introduction to the mathematical properties of stochastics and presents their applications to Markov processes, coding theory, population dynamics, and search engine design. The book is ideal for a newly designed course in an introduction to probability and information theory. Prerequisites include working knowledge of linear algebra, calculus, and probability theory. The first part of the text focuses on the rigorous theory of Markov processes on countable spaces (Markov chains) and provides the basis to developing solid probabilistic intuition without the need for a course in measure theory. The approach taken is gradual beginning with the case of discrete time and moving on to that of continuous time. The second part of this text is more applied; its core introduces various uses of convexity in probability and presents a nice treatment of entropy. 
650 0 |a Probabilities. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-74018-8  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE05790 
919 |a 978-3-319-74018-8 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 275007  |d 275007