Dynamic Neuroscience Statistics, Modeling, and Control /

This book shows how to develop efficient quantitative methods to characterize neural data and extra information that reveals underlying dynamics and neurophysiological mechanisms. Written by active experts in the field, it contains an exchange of innovative ideas among researchers at both computatio...

Celý popis

Uloženo v:
Podrobná bibliografie
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Témata:
ISBN:9783319719764
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618120355.0
007 cr nn 008mamaa
008 171228s2018 gw | s |||| 0|eng d
020 |a 9783319719764 
024 7 |a 10.1007/978-3-319-71976-4  |2 doi 
035 |a CVTIDW08600 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
245 1 0 |a Dynamic Neuroscience  |h [electronic resource] :  |b Statistics, Modeling, and Control /  |c edited by Zhe Chen, Sridevi V. Sarma. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XXI, 327 p. 80 illus., 62 illus. in color.  |b online resource. 
500 |a Engineering  
505 0 |a Introduction -- Part I Statistics & Signal Processing -- Characterizing Complex, Multi-scale Neural Phenomena Using State-Space Models -- Latent Variable Modeling of Neural Population Dynamics -- What Can Trial-to-Trial Variability Tell Us? A Distribution-Based Approach to Spike Train Decoding in the Rat Hippocampus and Entorhinal Cortex -- Sparsity Meets Dynamics: Robust Solutions to Neuronal Identification and Inverse Problems -- Artifact Rejection for Concurrent TMS-EEG Data -- Part II Modeling & Control Theory -- Characterizing Complex Human Behaviors and Neural Responses Using Dynamic Models -- Brain-Machine Interfaces -- Control-theoretic Approaches for Modeling, Analyzing and Manipulating Neuronal (In)activity -- From Physiological Signals to Pulsatile Dynamics: A Sparse System Identification Approach -- Neural Engine Hypothesis -- Inferring Neuronal Network Mechanisms Underlying Anesthesia induced Oscillations Using Mathematical Models -- Epilogue. 
516 |a text file PDF 
520 |a This book shows how to develop efficient quantitative methods to characterize neural data and extra information that reveals underlying dynamics and neurophysiological mechanisms. Written by active experts in the field, it contains an exchange of innovative ideas among researchers at both computational and experimental ends, as well as those at the interface. Authors discuss research challenges and new directions in emerging areas with two goals in mind: to collect recent advances in statistics, signal processing, modeling, and control methods in neuroscience; and to welcome and foster innovative or cross-disciplinary ideas along this line of research and discuss important research issues in neural data analysis. Making use of both tutorial and review materials, this book is written for neural, electrical, and biomedical engineers; computational neuroscientists; statisticians; computer scientists; and clinical engineers. Presents innovative methodological and algorithmic development in statistics, modeling, control, and signal processing for neural data analysis; Includes a coherent framework for a broad class of neural signal processing and control problems in neuroscience; Covers a wide range of representative case studies in neuroscience applications. 
650 0 |a Biomedical engineering. 
650 0 |a Signal processing. 
650 0 |a Image processing. 
650 0 |a Speech processing systems. 
650 0 |a Bioinformatics. 
650 0 |a Neurosciences. 
650 0 |a Statistics . 
650 0 |a Neural networks (Computer science) . 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-71976-4  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE05880 
919 |a 978-3-319-71976-4 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 274930  |d 274930