Dynamic Oracle Performance Analytics Using Normalized Metrics to Improve Database Speed /

Use an innovative approach that relies on big data and advanced analytical techniques to analyze and improve Oracle Database performance. The approach in this book is a step-change away from traditional methods. Instead of relying on a few hand-picked, favorite metrics, or wading through multiple sp...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Cornejo, Roger (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Berkeley, CA : Apress, 2018.
Vydání:1st ed. 2018.
Témata:
ISBN:9781484241370
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618120322.0
007 cr nn 008mamaa
008 181206s2018 xxu| s |||| 0|eng d
020 |a 9781484241370 
024 7 |a 10.1007/978-1-4842-4137-0  |2 doi 
035 |a CVTIDW08602 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Cornejo, Roger.  |4 aut 
245 1 0 |a Dynamic Oracle Performance Analytics  |h [electronic resource] :  |b Using Normalized Metrics to Improve Database Speed /  |c by Roger Cornejo. 
250 |a 1st ed. 2018. 
260 1 |a Berkeley, CA :  |b Apress,  |c 2018. 
300 |a XXI, 224 p. 83 illus.  |b online resource. 
500 |a Professional and Applied Computing  
505 0 |a Part I. Performance Tuning Basics -- 1. Traditional Approaches -- Part II. The Dynamic Oracle Performance Analytics (DOPA) Process -- 2. Gathering Problem Information -- 3. Data Preparation -- 4. Statistical Analysis -- 5. Feature Selection -- 6. Taxonomy -- 7. Building the Model and Reporting -- Part III. Case Studies and Further Applications -- 8. Case Studies -- 9. Monitoring -- 10. Further Enhancements. 
516 |a text file PDF 
520 |a Use an innovative approach that relies on big data and advanced analytical techniques to analyze and improve Oracle Database performance. The approach in this book is a step-change away from traditional methods. Instead of relying on a few hand-picked, favorite metrics, or wading through multiple specialized tables of information such as those found in an automatic workload repository (AWR) report, you will draw on all available data, applying big data methods and analytical techniques to draw impactful, focused performance improvement conclusions. This book reviews past and present practices, along with available tools, to help you pinpoint areas for improvement. The book then guides you through a step-by-step method that can be used to take advantage of all available metrics to identify problem areas and work toward improving them. The method presented simplifies the tuning process and solves the problem of metric overload. You will learn how to: collect and normalize data, generate deltas that are useful in performing statistical analysis, create and use a taxonomy to enhance your understanding of problem performance areas in your database and its applications, and create a root cause analysis report that enables understanding of a specific performance problem and its likely solutions. What You'll Learn: Collect and prepare metrics for analysis from a wide array of sources Apply statistical techniques to select relevant metrics Create a taxonomy to provide additional insight into problem areas Provide a metrics-based root cause analysis regarding the performance issue Generate an actionable tuning plan prioritized according to problem areas Monitor performance using database-specific normal ranges. 
650 0 |a Database management. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-1-4842-4137-0  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE05882 
919 |a 978-1-4842-4137-0 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 274831  |d 274831