A History of Abstract Algebra From Algebraic Equations to Modern Algebra /

This textbook provides an accessible account of the history of abstract algebra, tracing a range of topics in modern algebra and number theory back to their modest presence in the seventeenth and eighteenth centuries, and exploring the impact of ideas on the development of the subject. Beginning wit...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Gray, Jeremy (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Edice:Springer Undergraduate Mathematics Series,
Témata:
ISBN:9783319947730
ISSN:1615-2085
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618120308.0
007 cr nn 008mamaa
008 180807s2018 gw | s |||| 0|eng d
020 |a 9783319947730 
024 7 |a 10.1007/978-3-319-94773-0  |2 doi 
035 |a CVTIDW10079 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Gray, Jeremy.  |4 aut 
245 1 2 |a A History of Abstract Algebra  |h [electronic resource] :  |b From Algebraic Equations to Modern Algebra /  |c by Jeremy Gray. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XXIV, 415 p. 18 illus.  |b online resource. 
490 1 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
500 |a Mathematics and Statistics  
505 0 |a Introduction -- 1 Simple quadratic forms -- 2 Fermat's Last Theorem -- 3 Lagrange's theory of quadratic forms -- 4 Gauss's Disquisitiones Arithmeticae -- 5 Cyclotomy -- 6 Two of Gauss's proofs of quadratic reciprocity -- 7 Dirichlet's Lectures -- 8 Is the quintic unsolvable? -- 9 The unsolvability of the quintic -- 10 Galois's theory -- 11 After Galois - Introduction -- 12 Revision and first assignment -- 13 Jordan's Traité -- 14 Jordan and Klein -- 15 What is 'Galois theory'? -- 16 Algebraic number theory: cyclotomy -- 17 Dedekind's first theory of ideals -- 18 Dedekind's later theory of ideals -- 19 Quadratic forms and ideals -- 20 Kronecker's algebraic number theory -- 21 Revision and second assignment -- 22 Algebra at the end of the 19th century -- 23 The concept of an abstract field -- 24 Ideal theory -- 25 Invariant theory -- 26 Hilbert's Zahlbericht -- 27 The rise of modern algebra - group theory -- 28 Emmy Noether -- 29 From Weber to van der Waerden -- 30 Revision and final assignment -- A Polynomial equations in the 18th Century -- B Gauss and composition of forms -- C Gauss on quadratic reciprocity -- D From Jordan's Traité -- E Klein's Erlanger Programm -- F From Dedekind's 11th supplement -- G Subgroups of S4 and S5 -- H Curves -- I Resultants -- Bibliography -- Index. 
516 |a text file PDF 
520 |a This textbook provides an accessible account of the history of abstract algebra, tracing a range of topics in modern algebra and number theory back to their modest presence in the seventeenth and eighteenth centuries, and exploring the impact of ideas on the development of the subject. Beginning with Gauss's theory of numbers and Galois's ideas, the book progresses to Dedekind and Kronecker, Jordan and Klein, Steinitz, Hilbert, and Emmy Noether. Approaching mathematical topics from a historical perspective, the author explores quadratic forms, quadratic reciprocity, Fermat's Last Theorem, cyclotomy, quintic equations, Galois theory, commutative rings, abstract fields, ideal theory, invariant theory, and group theory. Readers will learn what Galois accomplished, how difficult the proofs of his theorems were, and how important Camille Jordan and Felix Klein were in the eventual acceptance of Galois's approach to the solution of equations. The book also describes the relationship between Kummer's ideal numbers and Dedekind's ideals, and discusses why Dedekind felt his solution to the divisor problem was better than Kummer's. Designed for a course in the history of modern algebra, this book is aimed at undergraduate students with an introductory background in algebra but will also appeal to researchers with a general interest in the topic. With exercises at the end of each chapter and appendices providing material difficult to find elsewhere, this book is self-contained and therefore suitable for self-study. . 
650 0 |a Mathematics. 
650 0 |a History. 
650 0 |a Algebra. 
650 0 |a Number theory. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-94773-0  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE07359 
919 |a 978-3-319-94773-0 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 274787  |d 274787