Elementary Fixed Point Theorems

This book provides a primary resource in basic fixed-point theorems due to Banach, Brouwer, Schauder and Tarski and their applications. Key topics covered include Sharkovsky's theorem on periodic points, Thron's results on the convergence of certain real iterates, Shield's common fixe...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Subrahmanyam, P.V (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Singapore : Springer Singapore , 2018.
Vydání:1st ed. 2018.
Edice:Forum for Interdisciplinary Mathematics,
Témata:
ISBN:9789811331589
ISSN:2364-6748
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618120227.0
007 cr nn 008mamaa
008 190110s2018 si | s |||| 0|eng d
020 |a 9789811331589 
024 7 |a 10.1007/978-981-13-3158-9  |2 doi 
035 |a CVTIDW08796 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Subrahmanyam, P.V.  |4 aut 
245 1 0 |a Elementary Fixed Point Theorems  |h [electronic resource] /  |c by P.V. Subrahmanyam. 
250 |a 1st ed. 2018. 
260 1 |a Singapore :  |b Springer Singapore ,  |c 2018. 
300 |a XIII, 302 p. 5 illus.  |b online resource. 
490 1 |a Forum for Interdisciplinary Mathematics,  |x 2364-6748 
500 |a Mathematics and Statistics  
505 0 |a Chapter 1. Prerequisites -- Chapter 2. Fixed Points of Some Real and Complex Functions -- Chapter 3. Fixed Points and Order -- Chapter 4. Partially Ordered Topological Spaces and Fixed Points -- Chapter 5. Contraction Principle -- Chapter 6. Applications of the Contraction Principle -- Chapter 7. Caristi's fixed point theorem -- Chapter 8. Contractive and Nonexpansive Mappings -- Chapter 9. Geometric Aspects of Banach Spaces and Nonexpansive Mappings -- Chapter 10. Brouwer's Fixed Point Theorem -- Chapter 11. Schauder's Fixed Point Theorem and Allied Theorems -- Chapter 12. Basic Analytic Degree Theory af a Mapping. 
516 |a text file PDF 
520 |a This book provides a primary resource in basic fixed-point theorems due to Banach, Brouwer, Schauder and Tarski and their applications. Key topics covered include Sharkovsky's theorem on periodic points, Thron's results on the convergence of certain real iterates, Shield's common fixed theorem for a commuting family of analytic functions and Bergweiler's existence theorem on fixed points of the composition of certain meromorphic functions with transcendental entire functions. Generalizations of Tarski's theorem by Merrifield and Stein and Abian's proof of the equivalence of Bourbaki-Zermelo fixed-point theorem and the Axiom of Choice are described in the setting of posets. A detailed treatment of Ward's theory of partially ordered topological spaces culminates in Sherrer fixed-point theorem. It elaborates Manka's proof of the fixed-point property of arcwise connected hereditarily unicoherent continua, based on the connection he observed between set theory and fixed-point theory via a certain partial order. Contraction principle is provided with two proofs: one due to Palais and the other due to Barranga. Applications of the contraction principle include the proofs of algebraic Weierstrass preparation theorem, a Cauchy-Kowalevsky theorem for partial differential equations and the central limit theorem. It also provides a proof of the converse of the contraction principle due to Jachymski, a proof of fixed point theorem for continuous generalized contractions, a proof of Browder-Gohde-Kirk fixed point theorem, a proof of Stalling's generalization of Brouwer's theorem, examine Caristi's fixed point theorem, and highlights Kakutani's theorems on common fixed points and their applications. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-981-13-3158-9  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE06076 
919 |a 978-981-13-3158-9 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 274664  |d 274664