Elliptic Differential Operators and Spectral Analysis

This book deals with elliptic differential equations, providing the analytic background necessary for the treatment of associated spectral questions, and covering important topics previously scattered throughout the literature. Starting with the basics of elliptic operators and their naturally assoc...

Full description

Saved in:
Bibliographic Details
Main Author: Edmunds, D. E. (Author)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing, 2018.
Edition:1st ed. 2018.
Series:Springer Monographs in Mathematics,
Subjects:
ISBN:9783030021252
ISSN:1439-7382
Online Access: Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618120210.0
007 cr nn 008mamaa
008 181120s2018 gw | s |||| 0|eng d
020 |a 9783030021252 
024 7 |a 10.1007/978-3-030-02125-2  |2 doi 
035 |a CVTIDW08808 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Edmunds, D. E.  |4 aut 
245 1 0 |a Elliptic Differential Operators and Spectral Analysis  |h [electronic resource] /  |c by D. E. Edmunds, W.D. Evans. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XIII, 322 p. 78 illus.  |b online resource. 
490 1 |a Springer Monographs in Mathematics,  |x 1439-7382 
500 |a Mathematics and Statistics  
505 0 |a 1. Preliminaries -- 2. The Laplace Operator -- 3. Second-order elliptic equations -- 4. The classical Dirichlet problem for second-order elliptic operators -- 5. Elliptic operators of arbitrary order -- 6. Operators and quadratic forms in Hilbert space -- 7. Realisations of second-order linear elliptic operators -- 8. The Lp approach to the Laplace operator -- 9. The p-Laplacian -- 10. The Rellich inequality -- 11. More properties on Sobolev embeddings -- 12. The Dirac Operator. 
516 |a text file PDF 
520 |a This book deals with elliptic differential equations, providing the analytic background necessary for the treatment of associated spectral questions, and covering important topics previously scattered throughout the literature. Starting with the basics of elliptic operators and their naturally associated function spaces, the authors then proceed to cover various related topics of current and continuing importance. Particular attention is given to the characterisation of self-adjoint extensions of symmetric operators acting in a Hilbert space and, for elliptic operators, the realisation of such extensions in terms of boundary conditions. A good deal of material not previously available in book form, such as the treatment of the Schauder estimates, is included. Requiring only basic knowledge of measure theory and functional analysis, the book is accessible to graduate students and will be of interest to all researchers in partial differential equations. The reader will value its self-contained, thorough and unified presentation of the modern theory of elliptic operators. 
650 0 |a Partial differential equations. 
650 0 |a Differential equations. 
650 0 |a Functional analysis. 
650 0 |a Operator theory. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-030-02125-2  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE06088 
919 |a 978-3-030-02125-2 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 274611  |d 274611