Deep Learning for Natural Language Processing Creating Neural Networks with Python /

Discover the concepts of deep learning used for natural language processing (NLP), with full-fledged examples of neural network models such as recurrent neural networks, long short-term memory networks, and sequence-2-sequence models. You'll start by covering the mathematical prerequisites and...

Full description

Saved in:
Bibliographic Details
Main Author: Goyal, Palash (Author)
Format: Electronic eBook
Language:English
Published: Berkeley, CA : Apress, 2018.
Edition:1st ed. 2018.
Subjects:
ISBN:9781484236857
Online Access: Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618120137.0
007 cr nn 008mamaa
008 180626s2018 xxu| s |||| 0|eng d
020 |a 9781484236857 
024 7 |a 10.1007/978-1-4842-3685-7  |2 doi 
035 |a CVTIDW08276 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Goyal, Palash.  |4 aut 
245 1 0 |a Deep Learning for Natural Language Processing  |h [electronic resource] :  |b Creating Neural Networks with Python /  |c by Palash Goyal, Sumit Pandey, Karan Jain. 
250 |a 1st ed. 2018. 
260 1 |a Berkeley, CA :  |b Apress,  |c 2018. 
300 |a XVII, 277 p. 99 illus., 2 illus. in color.  |b online resource. 
500 |a Professional and Applied Computing  
505 0 |a Chapter 1: Introduction to NLP and Deep Learning -- Chapter 2: Word Vector representations -- Chapter 3: Unfolding Recurrent Neural Networks -- Chapter 4: Developing a Chatbot -- Chapter 5: Research Paper Implementation: Sentiment Classification. 
516 |a text file PDF 
520 |a Discover the concepts of deep learning used for natural language processing (NLP), with full-fledged examples of neural network models such as recurrent neural networks, long short-term memory networks, and sequence-2-sequence models. You'll start by covering the mathematical prerequisites and the fundamentals of deep learning and NLP with practical examples. The first three chapters of the book cover the basics of NLP, starting with word-vector representation before moving onto advanced algorithms. The final chapters focus entirely on implementation, and deal with sophisticated architectures such as RNN, LSTM, and Seq2seq, using Python tools: TensorFlow, and Keras. Deep Learning for Natural Language Processing follows a progressive approach and combines all the knowledge you have gained to build a question-answer chatbot system. This book is a good starting point for people who want to get started in deep learning for NLP. All the code presented in the book will be available in the form of IPython notebooks and scripts, which allow you to try out the examples and extend them in interesting ways. You will: Gain the fundamentals of deep learning and its mathematical prerequisites Discover deep learning frameworks in Python Develop a chatbot Implement a research paper on sentiment classification. 
650 0 |a Artificial intelligence. 
650 0 |a Python (Computer program language). 
650 0 |a Open source software. 
650 0 |a Computer programming. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-1-4842-3685-7  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE05556 
919 |a 978-1-4842-3685-7 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 274511  |d 274511