Elliptic Systems of Phase Transition Type

This book focuses on the vector Allen-Cahn equation, which models coexistence of three or more phases and is related to Plateau complexes - non-orientable objects with a stratified structure. The minimal solutions of the vector equation exhibit an analogous structure not present in the scalar Allen-...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Alikakos, Nicholas D. (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Edice:Progress in Nonlinear Differential Equations and Their Applications, 91
Témata:
ISBN:9783319905723
ISSN:1421-1750 ;
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618120053.0
007 cr nn 008mamaa
008 190121s2018 gw | s |||| 0|eng d
020 |a 9783319905723 
024 7 |a 10.1007/978-3-319-90572-3  |2 doi 
035 |a CVTIDW08809 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Alikakos, Nicholas D.  |4 aut 
245 1 0 |a Elliptic Systems of Phase Transition Type  |h [electronic resource] /  |c by Nicholas D. Alikakos, Giorgio Fusco, Panayotis Smyrnelis. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XII, 343 p. 59 illus., 10 illus. in color.  |b online resource. 
490 1 |a Progress in Nonlinear Differential Equations and Their Applications,  |x 1421-1750 ;  |v 91 
500 |a Mathematics and Statistics  
505 0 |a Introduction -- Connections -- Basics for the PDE System -- The Cut-Off Lemma and a Maximum Principle -- Estimates -- Symmetry and the Vector Allen-Cahn Equation: the Point Group in Rn -- Symmetry and the Vector Allen-Cahn Equation: Crystalline and Other Complex Structures -- Hierarchical Structure - Stratification -- Vector Minimizers in R2 -- Radial Solutions of ∆u = c2u. 
516 |a text file PDF 
520 |a This book focuses on the vector Allen-Cahn equation, which models coexistence of three or more phases and is related to Plateau complexes - non-orientable objects with a stratified structure. The minimal solutions of the vector equation exhibit an analogous structure not present in the scalar Allen-Cahn equation, which models coexistence of two phases and is related to minimal surfaces. The 1978 De Giorgi conjecture for the scalar problem was settled in a series of papers: Ghoussoub and Gui (2d), Ambrosio and Cabré (3d), Savin (up to 8d), and del Pino, Kowalczyk and Wei (counterexample for 9d and above). This book extends, in various ways, the Caffarelli-Córdoba density estimates that played a major role in Savin's proof. It also introduces an alternative method for obtaining pointwise estimates. Key features and topics of this self-contained, systematic exposition include: • Resolution of the structure of minimal solutions in the equivariant class, (a) for general point groups, and (b) for general discrete reflection groups, thus establishing the existence of previously unknown lattice solutions. • Preliminary material beginning with the stress-energy tensor, via which monotonicity formulas, and Hamiltonian and Pohozaev identities are developed, including a self-contained exposition of the existence of standing and traveling waves. • Tools that allow the derivation of general properties of minimizers, without any assumptions of symmetry, such as a maximum principle or density and pointwise estimates. • Application of the general tools to equivariant solutions rendering exponential estimates, rigidity theorems and stratification results. This monograph is addressed to readers, beginning from the graduate level, with an interest in any of the following: differential equations - ordinary or partial; nonlinear analysis; the calculus of variations; the relationship of minimal surfaces to diffuse interfaces; or the applied mathematics of materials science. 
650 0 |a Partial differential equations. 
650 0 |a Calculus of variations. 
650 0 |a Differential equations. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-90572-3  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE06089 
919 |a 978-3-319-90572-3 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 274380  |d 274380