Distributions in the Physical and Engineering Sciences, Volume 3 Random and Anomalous Fractional Dynamics in Continuous Media /

Continuing the authors' multivolume project, this text considers the theory of distributions from an applied perspective, demonstrating how effective a combination of analytic and probabilistic methods can be for solving problems in the physical and engineering sciences. Volume 1 covered founda...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Saichev, Alexander I. (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Edice:Applied and Numerical Harmonic Analysis,
Témata:
ISBN:9783319925868
ISSN:2296-5009
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618120005.0
007 cr nn 008mamaa
008 180803s2018 gw | s |||| 0|eng d
020 |a 9783319925868 
024 7 |a 10.1007/978-3-319-92586-8  |2 doi 
035 |a CVTIDW08532 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Saichev, Alexander I.  |4 aut 
245 1 0 |a Distributions in the Physical and Engineering Sciences, Volume 3  |h [electronic resource] :  |b Random and Anomalous Fractional Dynamics in Continuous Media /  |c by Alexander I. Saichev, Wojbor A. woyczyński. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XX, 403 p. 61 illus., 6 illus. in color.  |b online resource. 
490 1 |a Applied and Numerical Harmonic Analysis,  |x 2296-5009 
500 |a Mathematics and Statistics  
505 0 |a Introduction to Volume 3 -- Notation -- Basic Distributional Tools for Probability Theory -- Random Distributions: Generalized Stochastic Processes -- Dynamical and Statistical Characteristics of Random Fields and Waves -- Forced Burgers Turbulence and Passive Tracer Transport in Burgers Flows -- Probability Distributions of Passive Tracers in Randomly Moving Media -- Levy Processes and Their Generalized Derivatives -- Linear Anomalous Fractional Dynamics in Continuous Media -- Nonlinear and Multiscale Anomalous Fractional Dynamics in Continuous Media -- Appendix A: Basic Facts About Distributions -- Bibliography -- Index. 
516 |a text file PDF 
520 |a Continuing the authors' multivolume project, this text considers the theory of distributions from an applied perspective, demonstrating how effective a combination of analytic and probabilistic methods can be for solving problems in the physical and engineering sciences. Volume 1 covered foundational topics such as distributional and fractional calculus, the integral transform, and wavelets, and Volume 2 explored linear and nonlinear dynamics in continuous media. With this volume, the scope is extended to the use of distributional tools in the theory of generalized stochastic processes and fields, and in anomalous fractional random dynamics. Chapters cover topics such as probability distributions; generalized stochastic processes, Brownian motion, and the white noise; stochastic differential equations and generalized random fields; Burgers turbulence and passive tracer transport in Burgers flows; and linear, nonlinear, and multiscale anomalous fractional dynamics in continuous media. The needs of the applied-sciences audience are addressed by a careful and rich selection of examples arising in real-life industrial and scientific labs and a thorough discussion of their physical significance. Numerous illustrations generate a better understanding of the core concepts discussed in the text, and a large number of exercises at the end of each chapter expand on these concepts. Distributions in the Physical and Engineering Sciences is intended to fill a gap in the typical undergraduate engineering/physical sciences curricula, and as such it will be a valuable resource for researchers and graduate students working in these areas. The only prerequisites are a three-four semester calculus sequence (including ordinary differential equations, Fourier series, complex variables, and linear algebra), and some probability theory, but basic definitions and facts are covered as needed. An appendix also provides background material concerning the Dirac-delta and other distributions. 
650 0 |a Probabilities. 
650 0 |a Engineering mathematics. 
650 0 |a Functional analysis. 
650 0 |a Statistics . 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-92586-8  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE05812 
919 |a 978-3-319-92586-8 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 274235  |d 274235