Dictionary Learning Algorithms and Applications

This book covers all the relevant dictionary learning algorithms, presenting them in full detail and showing their distinct characteristics while also revealing the similarities. It gives implementation tricks that are often ignored but that are crucial for a successful program. Besides MOD, K-SVD,...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Dumitrescu, Bogdan (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Témata:
ISBN:9783319786742
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618120004.0
007 cr nn 008mamaa
008 180416s2018 gw | s |||| 0|eng d
020 |a 9783319786742 
024 7 |a 10.1007/978-3-319-78674-2  |2 doi 
035 |a CVTIDW08436 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Dumitrescu, Bogdan.  |4 aut 
245 1 0 |a Dictionary Learning Algorithms and Applications  |h [electronic resource] /  |c by Bogdan Dumitrescu, Paul Irofti. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XIV, 284 p. 48 illus., 47 illus. in color.  |b online resource. 
500 |a Engineering  
505 0 |a Chapter1: Sparse representations -- Chapter2: Dictionary learning problem -- Chapter3: Standard algorithms -- Chapter4: Regularization and incoherence -- Chapter5: Other views on the DL problem -- Chapter6: Optimizing dictionary size -- Chapter7: Structured dictionaries -- Chapter8: Classification -- Chapter9: Kernel dictionary learning -- Chapter10: Cosparse representations. 
516 |a text file PDF 
520 |a This book covers all the relevant dictionary learning algorithms, presenting them in full detail and showing their distinct characteristics while also revealing the similarities. It gives implementation tricks that are often ignored but that are crucial for a successful program. Besides MOD, K-SVD, and other standard algorithms, it provides the significant dictionary learning problem variations, such as regularization, incoherence enforcing, finding an economical size, or learning adapted to specific problems like classification. Several types of dictionary structures are treated, including shift invariant; orthogonal blocks or factored dictionaries; and separable dictionaries for multidimensional signals. Nonlinear extensions such as kernel dictionary learning can also be found in the book. The discussion of all these dictionary types and algorithms is enriched with a thorough numerical comparison on several classic problems, thus showing the strengths and weaknesses of each algorithm. A few selected applications, related to classification, denoising and compression, complete the view on the capabilities of the presented dictionary learning algorithms. The book is accompanied by code for all algorithms and for reproducing most tables and figures. Presents all relevant dictionary learning algorithms - for the standard problem and its main variations - in detail and ready for implementation; Covers all dictionary structures that are meaningful in applications; Examines the numerical properties of the algorithms and shows how to choose the appropriate dictionary learning algorithm. 
650 0 |a Signal processing. 
650 0 |a Image processing. 
650 0 |a Speech processing systems. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Electronic circuits. 
650 0 |a Computer communication systems. 
650 0 |a Computers. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-78674-2  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE05716 
919 |a 978-3-319-78674-2 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 274231  |d 274231