Empirical Likelihood and Quantile Methods for Time Series Efficiency, Robustness, Optimality, and Prediction /

This book integrates the fundamentals of asymptotic theory of statistical inference for time series under nonstandard settings, e.g., infinite variance processes, not only from the point of view of efficiency but also from that of robustness and optimality by minimizing prediction error. This is the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Liu, Yan (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Singapore : Springer Singapore , 2018.
Ausgabe:1st ed. 2018.
Schriftenreihe:JSS Research Series in Statistics,
Schlagworte:
ISBN:9789811001529
ISSN:2364-0057
Online-Zugang: Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618115931.0
007 cr nn 008mamaa
008 181205s2018 si | s |||| 0|eng d
020 |a 9789811001529 
024 7 |a 10.1007/978-981-10-0152-9  |2 doi 
035 |a CVTIDW08860 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Liu, Yan.  |4 aut 
245 1 0 |a Empirical Likelihood and Quantile Methods for Time Series  |h [electronic resource] :  |b Efficiency, Robustness, Optimality, and Prediction /  |c by Yan Liu, Fumiya Akashi, Masanobu Taniguchi. 
250 |a 1st ed. 2018. 
260 1 |a Singapore :  |b Springer Singapore ,  |c 2018. 
300 |a X, 136 p. 10 illus., 9 illus. in color.  |b online resource. 
490 1 |a JSS Research Series in Statistics,  |x 2364-0057 
500 |a Mathematics and Statistics  
505 0 |a Chapter 1. Introduction to Nonstandard Analysis in Time Series Analysis -- Chapter 2. Parameter Estimation by Quantile Prediction Error -- Chapter 3. Hypotheses Testing by Generalized Empirical Likelihood for Stable Processes -- Chapter 4. Higher Order Efficiency of Generalized Empirical Likelihood for Dependent Data -- Chapter 5. Robust Aspects of Empirical Likelihood for Unified Prediction Error -- Chapter 6. Applications. 
516 |a text file PDF 
520 |a This book integrates the fundamentals of asymptotic theory of statistical inference for time series under nonstandard settings, e.g., infinite variance processes, not only from the point of view of efficiency but also from that of robustness and optimality by minimizing prediction error. This is the first book to consider the generalized empirical likelihood applied to time series models in frequency domain and also the estimation motivated by minimizing quantile prediction error without assumption of true model. It provides the reader with a new horizon for understanding the prediction problem that occurs in time series modeling and a contemporary approach of hypothesis testing by the generalized empirical likelihood method. Nonparametric aspects of the methods proposed in this book also satisfactorily address economic and financial problems without imposing redundantly strong restrictions on the model, which has been true until now. Dealing with infinite variance processes makes analysis of economic and financial data more accurate under the existing results from the demonstrative research. The scope of applications, however, is expected to apply to much broader academic fields. The methods are also sufficiently flexible in that they represent an advanced and unified development of prediction form including multiple-point extrapolation, interpolation, and other incomplete past forecastings. Consequently, they lead readers to a good combination of efficient and robust estimate and test, and discriminate pivotal quantities contained in realistic time series models. 
650 0 |a Statistics . 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-981-10-0152-9  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE06140 
919 |a 978-981-10-0152-9 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 274133  |d 274133