Convex Functions and Their Applications A Contemporary Approach /

This second edition provides a thorough introduction to contemporary convex function theory with many new results. A large variety of subjects are covered, from the one real variable case to some of the most advanced topics. The new edition includes considerably more material emphasizing the rich ap...

Full description

Saved in:
Bibliographic Details
Main Author: Niculescu, Constantin P. (Author)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing, 2018.
Edition:2nd ed. 2018.
Series:CMS Books in Mathematics, Ouvrages de mathématiques de la SMC,
Subjects:
ISBN:9783319783376
ISSN:1613-5237
Online Access: Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618115921.0
007 cr nn 008mamaa
008 180608s2018 gw | s |||| 0|eng d
020 |a 9783319783376 
024 7 |a 10.1007/978-3-319-78337-6  |2 doi 
035 |a CVTIDW08021 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Niculescu, Constantin P.  |4 aut 
245 1 0 |a Convex Functions and Their Applications  |h [electronic resource] :  |b A Contemporary Approach /  |c by Constantin P. Niculescu, Lars-Erik Persson. 
250 |a 2nd ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XVII, 415 p.  |b online resource. 
490 1 |a CMS Books in Mathematics, Ouvrages de mathématiques de la SMC,  |x 1613-5237 
500 |a Mathematics and Statistics  
505 0 |a Convex Functions on Intervals -- Convex Sets in Real Linear Spaces -- Convex Functions on a Normed Linear Space -- Convexity and Majorization -- Convexity in Spaces of Matrices -- Duality and Convex Optimization -- Special Topics in Majorization Theory -- A. Generalized Convexity on Intervals -- B. Background on Convex Sets -- C. Elementary Symmetric Functions -- D. Second Order Differentiability of Convex Functions -- E. The Variational Approach of PDE. 
516 |a text file PDF 
520 |a This second edition provides a thorough introduction to contemporary convex function theory with many new results. A large variety of subjects are covered, from the one real variable case to some of the most advanced topics. The new edition includes considerably more material emphasizing the rich applicability of convex analysis to concrete examples. Chapters 4, 5, and 6 are entirely new, covering important topics such as the Hardy-Littlewood-Pólya-Schur theory of majorization, matrix convexity, and the Legendre-Fenchel-Moreau duality theory. This book can serve as a reference and source of inspiration to researchers in several branches of mathematics and engineering, and it can also be used as a reference text for graduate courses on convex functions and applications. 
650 0 |a Functions of real variables. 
650 0 |a Functional analysis. 
650 0 |a Convex geometry . 
650 0 |a Discrete geometry. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-78337-6  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE05301 
919 |a 978-3-319-78337-6 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 274103  |d 274103