Completion, Čech and Local Homology and Cohomology Interactions Between Them /

The aim of the present monograph is a thorough study of the adic-completion, its left derived functors and their relations to the local cohomology functors, as well as several completeness criteria, related questions and various dualities formulas. A basic construction is the Čech complex with respe...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Schenzel, Peter (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Edice:Springer Monographs in Mathematics,
Témata:
ISBN:9783319965178
ISSN:1439-7382
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618115909.0
007 cr nn 008mamaa
008 180915s2018 gw | s |||| 0|eng d
020 |a 9783319965178 
024 7 |a 10.1007/978-3-319-96517-8  |2 doi 
035 |a CVTIDW07806 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Schenzel, Peter.  |4 aut 
245 1 0 |a Completion, Čech and Local Homology and Cohomology  |h [electronic resource] :  |b Interactions Between Them /  |c by Peter Schenzel, Anne-Marie Simon. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XIX, 346 p. 145 illus.  |b online resource. 
490 1 |a Springer Monographs in Mathematics,  |x 1439-7382 
500 |a Mathematics and Statistics  
505 0 |a Part I: Modules,- 1. Preliminaries and auxiliary results -- 2. Adic topology and completion -- 3. Ext-Tor vanishing and completeness criteria -- PartII: Complexes -- 4. Homological Preliminaries -- 5. Koszul complexes, depth and codepth -- 6. Čech complexes, Čech homology and cohomology -- 7. Local cohomology and local homology -- 8. The formal power series Koszul complex -- 9. Complements and Applications -- Part III: Duality -- 10. Čech and local duality -- 11. Dualizing complexes -- 12. Local duality with dualizing complexes and other dualities -- Appendix -- References -- Notation -- Subject Index. 
516 |a text file PDF 
520 |a The aim of the present monograph is a thorough study of the adic-completion, its left derived functors and their relations to the local cohomology functors, as well as several completeness criteria, related questions and various dualities formulas. A basic construction is the Čech complex with respect to a system of elements and its free resolution. The study of its homology and cohomology will play a crucial role in order to understand left derived functors of completion and right derived functors of torsion. This is useful for the extension and refinement of results known for modules to unbounded complexes in the more general setting of not necessarily Noetherian rings. The book is divided into three parts. The first one is devoted to modules, where the adic-completion functor is presented in full details with generalizations of some previous completeness criteria for modules. Part II is devoted to the study of complexes. Part III is mainly concerned with duality, starting with those between completion and torsion and leading to new aspects of various dualizing complexes. The Appendix covers various additional and complementary aspects of the previous investigations and also provides examples showing the necessity of the assumptions. The book is directed to readers interested in recent progress in Homological and Commutative Algebra. Necessary prerequisites include some knowledge of Commutative Algebra and a familiarity with basic Homological Algebra. The book could be used as base for seminars with graduate students interested in Homological Algebra with a view towards recent research. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-96517-8  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE05086 
919 |a 978-3-319-96517-8 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 274066  |d 274066