Deep Belief Nets in C++ and CUDA C: Volume 2 Autoencoding in the Complex Domain /

Discover the essential building blocks of a common and powerful form of deep belief net: the autoencoder. You'll take this topic beyond current usage by extending it to the complex domain for signal and image processing applications. Deep Belief Nets in C++ and CUDA C: Volume 2 also covers seve...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Masters, Timothy (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Berkeley, CA : Apress, 2018.
Vydání:1st ed. 2018.
Témata:
ISBN:9781484236468
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618115826.0
007 cr nn 008mamaa
008 180529s2018 xxu| s |||| 0|eng d
020 |a 9781484236468 
024 7 |a 10.1007/978-1-4842-3646-8  |2 doi 
035 |a CVTIDW08274 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Masters, Timothy.  |4 aut 
245 1 0 |a Deep Belief Nets in C++ and CUDA C: Volume 2  |h [electronic resource] :  |b Autoencoding in the Complex Domain /  |c by Timothy Masters. 
250 |a 1st ed. 2018. 
260 1 |a Berkeley, CA :  |b Apress,  |c 2018. 
300 |a XI, 258 p. 47 illus.  |b online resource. 
500 |a Professional and Applied Computing  
505 0 |a 0. Introduction -- 1. Embedded Class Labels -- 2. Signal Preprocessing -- 3. Image Preprocessing -- 4. Autoencoding -- 5. Deep Operating Manual. 
516 |a text file PDF 
520 |a Discover the essential building blocks of a common and powerful form of deep belief net: the autoencoder. You'll take this topic beyond current usage by extending it to the complex domain for signal and image processing applications. Deep Belief Nets in C++ and CUDA C: Volume 2 also covers several algorithms for preprocessing time series and image data. These algorithms focus on the creation of complex-domain predictors that are suitable for input to a complex-domain autoencoder. Finally, you'll learn a method for embedding class information in the input layer of a restricted Boltzmann machine. This facilitates generative display of samples from individual classes rather than the entire data distribution. The ability to see the features that the model has learned for each class separately can be invaluable. At each step this book provides you with intuitive motivation, a summary of the most important equations relevant to the topic, and highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. You will: • Code for deep learning, neural networks, and AI using C++ and CUDA C • Carry out signal preprocessing using simple transformations, Fourier transforms, Morlet wavelets, and more • Use the Fourier Transform for image preprocessing • Implement autoencoding via activation in the complex domain • Work with algorithms for CUDA gradient computation • Use the DEEP operating manual. 
650 0 |a Artificial intelligence. 
650 0 |a Programming languages (Electronic computers). 
650 0 |a Big data. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-1-4842-3646-8  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE05554 
919 |a 978-1-4842-3646-8 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 273935  |d 273935