Credit-Risk Modelling Theoretical Foundations, Diagnostic Tools, Practical Examples, and Numerical Recipes in Python /

The risk of counterparty default in banking, insurance, institutional, and pension-fund portfolios is an area of ongoing and increasing importance for finance practitioners. It is, unfortunately, a topic with a high degree of technical complexity. Addressing this challenge, this book provides a comp...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Bolder, David Jamieson (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Témata:
ISBN:9783319946887
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618115747.0
007 cr nn 008mamaa
008 181031s2018 gw | s |||| 0|eng d
020 |a 9783319946887 
024 7 |a 10.1007/978-3-319-94688-7  |2 doi 
035 |a CVTIDW08103 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Bolder, David Jamieson.  |4 aut 
245 1 0 |a Credit-Risk Modelling  |h [electronic resource] :  |b Theoretical Foundations, Diagnostic Tools, Practical Examples, and Numerical Recipes in Python /  |c by David Jamieson Bolder. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XXXV, 684 p. 130 illus. in color.  |b online resource. 
500 |a Economics and Finance  
505 0 |a Getting Started -- Part I Modelling Frameworks -- A Natural First Step.-Mixture or Actuarial Models -- Threshold Models.-The Genesis of Credit-Risk Modelling -- Part II Diagnostic Tools -- A Regulatory Perspective -- Risk Attribution -- Monte Carlo Methods -- Part III Parameter Estimation -- Default Probabilities -- Default and Asset Correlation. 
516 |a text file PDF 
520 |a The risk of counterparty default in banking, insurance, institutional, and pension-fund portfolios is an area of ongoing and increasing importance for finance practitioners. It is, unfortunately, a topic with a high degree of technical complexity. Addressing this challenge, this book provides a comprehensive and attainable mathematical and statistical discussion of a broad range of existing default-risk models. Model description and derivation, however, is only part of the story. Through use of exhaustive practical examples and extensive code illustrations in the Python programming language, this work also explicitly shows the reader how these models are implemented. Bringing these complex approaches to life by combining the technical details with actual real-life Python code reduces the burden of model complexity and enhances accessibility to this decidedly specialized field of study. The entire work is also liberally supplemented with model-diagnostic, calibration, and parameter-estimation techniques to assist the quantitative analyst in day-to-day implementation as well as in mitigating model risk. Written by an active and experienced practitioner, it is an invaluable learning resource and reference text for financial-risk practitioners and an excellent source for advanced undergraduate and graduate students seeking to acquire knowledge of the key elements of this discipline. 
650 0 |a Risk management. 
650 0 |a Business enterprises-Finance. 
650 0 |a Economics, Mathematical . 
650 0 |a Financial engineering. 
650 0 |a Banks and banking. 
650 0 |a Statistics . 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-94688-7  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE05383 
919 |a 978-3-319-94688-7 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 273818  |d 273818