The Gradient Discretisation Method

This monograph presents the Gradient Discretisation Method (GDM), which is a unified convergence analysis framework for numerical methods for elliptic and parabolic partial differential equations. The results obtained by the GDM cover both stationary and transient models; error estimates are provide...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Droniou, Jérôme (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Edice:Mathématiques et Applications, 82
Témata:
ISBN:9783319790428
ISSN:1154-483X ;
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618115727.0
007 cr nn 008mamaa
008 180731s2018 gw | s |||| 0|eng d
020 |a 9783319790428 
024 7 |a 10.1007/978-3-319-79042-8  |2 doi 
035 |a CVTIDW09827 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Droniou, Jérôme.  |4 aut 
245 1 4 |a The Gradient Discretisation Method  |h [electronic resource] /  |c by Jérôme Droniou, Robert Eymard, Thierry Gallouët, Cindy Guichard, Raphaèle Herbin. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XXIV, 497 p. 33 illus., 14 illus. in color.  |b online resource. 
490 1 |a Mathématiques et Applications,  |x 1154-483X ;  |v 82 
500 |a Mathematics and Statistics  
505 0 |a Part I Elliptic problems -- Part II Parabolic problems -- Part III Examples of gradient discretisation methods -- Part IV Appendix. 
516 |a text file PDF 
520 |a This monograph presents the Gradient Discretisation Method (GDM), which is a unified convergence analysis framework for numerical methods for elliptic and parabolic partial differential equations. The results obtained by the GDM cover both stationary and transient models; error estimates are provided for linear (and some non-linear) equations, and convergence is established for a wide range of fully non-linear models (e.g. Leray-Lions equations and degenerate parabolic equations such as the Stefan or Richards models). The GDM applies to a diverse range of methods, both classical (conforming, non-conforming, mixed finite elements, discontinuous Galerkin) and modern (mimetic finite differences, hybrid and mixed finite volume, MPFA-O finite volume), some of which can be built on very general meshes.ˆspan style="font-family:" ms="" mincho";mso-bidi-font-family:="" the="" core="" properties="" and="" analytical="" tools="" required="" to="" work="" within="" gdm="" are="" stressed,="" it="" is="" shown="" that="" scheme="" convergence="" can="" often="" be="" established="" by="" verifying="" a="" small="" number="" of="" properties.="" scope="" some="" featured="" techniques="" results,="" such="" as="" time-space="" compactness="" theorems="" (discrete="" aubin-simon,="" discontinuous="" ascoli-arzela),="" goes="" beyond="" gdm,="" making="" them="" potentially="" applicable="" numerical="" schemes="" not="" (yet)="" known="" fit="" into="" this="" framework.ˆspan style="font-family:" ms="" mincho";mso-bidi-font-family:="" this="" monograph="" is="" intended="" for="" graduate="" students,="" researchers="" and="" experts="" in="" the="" field="" of="" numerical="" analysis="" partial="" differential="" equations. 
650 0 |a Computer mathematics. 
650 0 |a Partial differential equations. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-79042-8  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE07107 
919 |a 978-3-319-79042-8 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 273756  |d 273756