Classical Mirror Symmetry

This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov-Witten invariants of a Calabi-Yau threefold by using the Picard-Fuchs differential equation of period integrals of its mirror Calabi-Yau threefold. The book concentrates on the...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Jinzenji, Masao (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Singapore : Springer Singapore , 2018.
Vydání:1st ed. 2018.
Edice:SpringerBriefs in Mathematical Physics, 29
Témata:
ISBN:9789811300561
ISSN:2197-1757 ;
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618115715.0
007 cr nn 008mamaa
008 180418s2018 si | s |||| 0|eng d
020 |a 9789811300561 
024 7 |a 10.1007/978-981-13-0056-1  |2 doi 
035 |a CVTIDW07616 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Jinzenji, Masao.  |4 aut 
245 1 0 |a Classical Mirror Symmetry  |h [electronic resource] /  |c by Masao Jinzenji. 
250 |a 1st ed. 2018. 
260 1 |a Singapore :  |b Springer Singapore ,  |c 2018. 
300 |a VIII, 140 p.  |b online resource. 
490 1 |a SpringerBriefs in Mathematical Physics,  |x 2197-1757 ;  |v 29 
500 |a Mathematics and Statistics  
505 0 |a 1. Brief Introduction of Mirror Symmetry -- 2. Topological Sigma Models (A-Model and B-Model) -- 3. Basics of Geometry of Complex Manifolds -- 4. Detailed Computation of B-Model Prediction -- 5. Moduli space of Holomorphic Maps from CP^1 to CP^{N-1} -- 6. Localization Computation -- 7. Brief Outline of Direct Proof of Mirror Theorem. 
516 |a text file PDF 
520 |a This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov-Witten invariants of a Calabi-Yau threefold by using the Picard-Fuchs differential equation of period integrals of its mirror Calabi-Yau threefold. The book concentrates on the best-known example, the quintic hypersurface in 4-dimensional projective space, and its mirror manifold. First, there is a brief review of the process of discovery of mirror symmetry and the striking result proposed in the celebrated paper by Candelas and his collaborators. Next, some elementary results of complex manifolds and Chern classes needed for study of mirror symmetry are explained. Then the topological sigma models, the A-model and the B-model, are introduced. The classical mirror symmetry hypothesis is explained as the equivalence between the correlation function of the A-model of a quintic hyper-surface and that of the B-model of its mirror manifold. On the B-model side, the process of construction of a pair of mirror Calabi-Yau threefold using toric geometry is briefly explained. Also given are detailed explanations of the derivation of the Picard-Fuchs differential equation of the period integrals and on the process of deriving the instanton expansion of the A-model Yukawa coupling based on the mirror symmetry hypothesis. On the A-model side, the moduli space of degree d quasimaps from CP^1 with two marked points to CP^4 is introduced, with reconstruction of the period integrals used in the B-model side as generating functions of the intersection numbers of the moduli space. Lastly, a mathematical justification for the process of the B-model computation from the point of view of the geometry of the moduli space of quasimaps is given. The style of description is between that of mathematics and physics, with the assumption that readers have standard graduate student backgrounds in both disciplines. 
650 0 |a Mathematical physics. 
650 0 |a Quantum field theory. 
650 0 |a String theory. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-981-13-0056-1  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE04896 
919 |a 978-981-13-0056-1 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 273718  |d 273718