Calculus of Variations

This textbook provides a comprehensive introduction to the classical and modern calculus of variations, serving as a useful reference to advanced undergraduate and graduate students as well as researchers in the field. Starting from ten motivational examples, the book begins with the most important...

Full description

Saved in:
Bibliographic Details
Main Author: Rindler, Filip (Author)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing, 2018.
Edition:1st ed. 2018.
Series:Universitext,
Subjects:
ISBN:9783319776378
ISSN:0172-5939
Online Access: Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618115700.0
007 cr nn 008mamaa
008 180619s2018 gw | s |||| 0|eng d
020 |a 9783319776378 
024 7 |a 10.1007/978-3-319-77637-8  |2 doi 
035 |a CVTIDW07495 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Rindler, Filip.  |4 aut 
245 1 0 |a Calculus of Variations  |h [electronic resource] /  |c by Filip Rindler. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XII, 444 p. 36 illus., 2 illus. in color.  |b online resource. 
490 1 |a Universitext,  |x 0172-5939 
500 |a Mathematics and Statistics  
505 0 |a Part I Basic Course -- 1 Introduction -- 2 Convexity -- 3 Variations -- 4 Young Measures -- 5 Quasiconvexity -- 6 Polyconvexity -- 7 Relaxation -- Part II Advanced Topics -- 8 Rigidity -- 9 Microstructure -- 10 Singularities -- 11 Linear-Growth Functionals -- 12 Generalized Young Measures -- 13 G-Convergence -- A Prerequisites -- References -- Index. 
516 |a text file PDF 
520 |a This textbook provides a comprehensive introduction to the classical and modern calculus of variations, serving as a useful reference to advanced undergraduate and graduate students as well as researchers in the field. Starting from ten motivational examples, the book begins with the most important aspects of the classical theory, including the Direct Method, the Euler-Lagrange equation, Lagrange multipliers, Noether's Theorem and some regularity theory. Based on the efficient Young measure approach, the author then discusses the vectorial theory of integral functionals, including quasiconvexity, polyconvexity, and relaxation. In the second part, more recent material such as rigidity in differential inclusions, microstructure, convex integration, singularities in measures, functionals defined on functions of bounded variation (BV), and Γ-convergence for phase transitions and homogenization are explored. While predominantly designed as a textbook for lecture courses on the calculus of variations, this book can also serve as the basis for a reading seminar or as a companion for self-study. The reader is assumed to be familiar with basic vector analysis, functional analysis, Sobolev spaces, and measure theory, though most of the preliminaries are also recalled in the appendix. 
650 0 |a Calculus of variations. 
650 0 |a Partial differential equations. 
650 0 |a Functional analysis. 
650 0 |a Mathematical physics. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-77637-8  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE04775 
919 |a 978-3-319-77637-8 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 273674  |d 273674