Combining Interval, Probabilistic, and Other Types of Uncertainty in Engineering Applications

How can we solve engineering problems while taking into account data characterized by different types of measurement and estimation uncertainty: interval, probabilistic, fuzzy, etc.? This book provides a theoretical basis for arriving at such solutions, as well as case studies demonstrating how thes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Pownuk, Andrew (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Cham : Springer International Publishing, 2018.
Ausgabe:1st ed. 2018.
Schriftenreihe:Studies in Computational Intelligence, 773
Schlagworte:
ISBN:9783319910260
ISSN:1860-949X ;
Online-Zugang: Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618115627.0
007 cr nn 008mamaa
008 180503s2018 gw | s |||| 0|eng d
020 |a 9783319910260 
024 7 |a 10.1007/978-3-319-91026-0  |2 doi 
035 |a CVTIDW07752 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Pownuk, Andrew.  |4 aut 
245 1 0 |a Combining Interval, Probabilistic, and Other Types of Uncertainty in Engineering Applications  |h [electronic resource] /  |c by Andrew Pownuk, Vladik Kreinovich. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XI, 202 p. 2 illus., 1 illus. in color.  |b online resource. 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 773 
500 |a Engineering  
505 0 |a Introduction -- How to Get More Accurate Estimates -- How to Speed Up Computations -- Towards a Better Understandability of Uncertainty-Estimating Algorithms -- How General Can We Go: What Is Computable and What Is Not -- Decision Making Under Uncertainty -- Conclusions. 
516 |a text file PDF 
520 |a How can we solve engineering problems while taking into account data characterized by different types of measurement and estimation uncertainty: interval, probabilistic, fuzzy, etc.? This book provides a theoretical basis for arriving at such solutions, as well as case studies demonstrating how these theoretical ideas can be translated into practical applications in the geosciences, pavement engineering, etc. In all these developments, the authors' objectives were to provide accurate estimates of the resulting uncertainty; to offer solutions that require reasonably short computation times; to offer content that is accessible for engineers; and to be sufficiently general - so that readers can use the book for many different problems. The authors also describe how to make decisions under different types of uncertainty. The book offers a valuable resource for all practical engineers interested in better ways of gauging uncertainty, for students eager to learn and apply the new techniques, and for researchers interested in processing heterogeneous uncertainty. . 
650 0 |a Computational intelligence. 
650 0 |a Engineering mathematics. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-91026-0  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE05032 
919 |a 978-3-319-91026-0 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 273574  |d 273574