Complex Networks IX Proceedings of the 9th Conference on Complex Networks CompleNet 2018 /

This book aims to bring together researchers and practitioners working across domains and research disciplines to measure, model, and visualize complex networks. It collects the works presented at the 9th International Conference on Complex Networks (CompleNet) 2018 in Boston, MA in March, 2018. Wit...

Celý popis

Uloženo v:
Podrobná bibliografie
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Edice:Springer Proceedings in Complexity,
Témata:
ISBN:9783319731988
ISSN:2213-8684
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618115617.0
007 cr nn 008mamaa
008 180215s2018 gw | s |||| 0|eng d
020 |a 9783319731988 
024 7 |a 10.1007/978-3-319-73198-8  |2 doi 
035 |a CVTIDW07815 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
245 1 0 |a Complex Networks IX  |h [electronic resource] :  |b Proceedings of the 9th Conference on Complex Networks CompleNet 2018 /  |c edited by Sean Cornelius, Kate Coronges, Bruno Gonçalves, Roberta Sinatra, Alessandro Vespignani. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XV, 350 p. 90 illus., 81 illus. in color.  |b online resource. 
490 1 |a Springer Proceedings in Complexity,  |x 2213-8684 
500 |a Physics and Astronomy  
505 0 |a Part I: Theory of Complex Networks -- On the Eccentricity Function in Graphs -- Density Decompositions of Networks -- 188 Fast Streaming Small Graph Canonization -- Silhouette for the Evaluation of Community Structures in Multiplex Networks -- Jaccard Curvature: An Efficient Proxy for Ollivier-Ricci Curvature in Graphs -- Combinatorial Miller-Hagberg Algorithm for Randomization of Dense Networks -- Proposal of Strategic Link Addition for Improving the Robustness of Multiplex Networks -- Part II: Graph Embeddings -- Embedding-Centrality: Generic Centrality Computation Using Neural Networks -- Fast Sequence Based Embedding with Diffusion Graphs -- Semi-supervised Graph Embedding Approach to Dynamic Link Prediction -- Modularity Optimization as a Training Criterion for Graph Neural Networks -- Part II: Network Dynamics -- Outer synchronization for General Weighted Complex Dynamical Networks Considering Incomplete Measurements of Transmitted Information -- Diffusive Phenomena in Dynamic Networks: A Data-driven Study -- Fractal Analyses of Networks of Integrate-and-Fire Stochastic Spiking Neurons -- Part IV: Network Science Applications -- Cultivating Tipping Points: Network Science in Teaching -- Terrorist Network Analyzed with an Influence Spreading Model -- Author Attribution using Network Motifs -- Complex Networks Reveal a Glottochronological Classification of Natural Languages -- A Percolation-based Thresholding Method with Applications in Functional Connectivity Analysis -- Discovering Patterns of Interest in IP Traffic Using Cliques in Bipartite Link Streams -- Router Level Topologies of Autonomous Systems -- Part V: Human Behavior and Social Networks -- Social Influence (Deep) Learning for Human Behavior Prediction -- Inspiration, Captivation, and Misdirection: Emergent Properties in Networks of Online Navigation -- Are Crisis Platforms Supporting Citizen Participation? -- Dynamic Visualization of Citation Networks and Detection of Influential Node Addition -- A Trust-Based News Spreading Model -- Discovering Mobility Functional Areas: A Mobility Data Analysis Approach -- Estimating Peer Influence Effects Under Homphily: Randomized Treatments and Insights. 
516 |a text file PDF 
520 |a This book aims to bring together researchers and practitioners working across domains and research disciplines to measure, model, and visualize complex networks. It collects the works presented at the 9th International Conference on Complex Networks (CompleNet) 2018 in Boston, MA in March, 2018. With roots in physical, information and social science, the study of complex networks provides a formal set of mathematical methods, computational tools and theories to describe prescribe and predict dynamics and behaviors of complex systems. Despite their diversity, whether the systems are made up of physical, technological, informational, or social networks, they share many common organizing principles and thus can be studied with similar approaches. This book provides a view of the state-of-the-art in this dynamic field and covers topics such as group decision-making, brain and cellular connectivity, network controllability and resiliency, online activism, recommendation systems, and cyber security. 
650 0 |a Physics. 
650 0 |a Social sciences-Data processing. 
650 0 |a Social sciences-Computer programs. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Computational complexity. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-73198-8  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE05095 
919 |a 978-3-319-73198-8 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 273544  |d 273544