Combustion Optimization Based on Computational Intelligence
This book presents the latest findings on the subject of combustion optimization based on computational intelligence. It covers a broad range of topics, including the modeling of coal combustion characteristics based on artificial neural networks and support vector machines. It also describes the op...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Format: | Elektronisch E-Book |
| Sprache: | Englisch |
| Veröffentlicht: |
Singapore :
Springer Singapore ,
2018.
|
| Ausgabe: | 1st ed. 2018. |
| Schriftenreihe: | Advanced Topics in Science and Technology in China,
|
| Schlagworte: | |
| ISBN: | 9789811078750 |
| ISSN: | 1995-6819 |
| Online-Zugang: |
|
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
| LEADER | 00000nam a22000005i 4500 | ||
|---|---|---|---|
| 003 | SK-BrCVT | ||
| 005 | 20220618115610.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 180202s2018 si | s |||| 0|eng d | ||
| 020 | |a 9789811078750 | ||
| 024 | 7 | |a 10.1007/978-981-10-7875-0 |2 doi | |
| 035 | |a CVTIDW07753 | ||
| 040 | |a Springer-Nature |b eng |c CVTISR |e AACR2 | ||
| 041 | |a eng | ||
| 100 | 1 | |a Zhou, Hao. |4 aut | |
| 245 | 1 | 0 | |a Combustion Optimization Based on Computational Intelligence |h [electronic resource] / |c by Hao Zhou, Kefa Cen. |
| 250 | |a 1st ed. 2018. | ||
| 260 | 1 | |a Singapore : |b Springer Singapore , |c 2018. | |
| 300 | |a XXVI, 270 p. 229 illus., 129 illus. in color. |b online resource. | ||
| 490 | 1 | |a Advanced Topics in Science and Technology in China, |x 1995-6819 | |
| 500 | |a Energy | ||
| 505 | 0 | |a The influence of combustion parameters on NOx emissions and carbon burnout -- Modeling methods for combustion characteristics -- Neural network modeling of combustion characteristics -- Support vector machine modeling the combustion characteristics -- Combining neural network or support vector machine with optimization algorithms to optimize the combustion -- Online combustion optimization system. | |
| 516 | |a text file PDF | ||
| 520 | |a This book presents the latest findings on the subject of combustion optimization based on computational intelligence. It covers a broad range of topics, including the modeling of coal combustion characteristics based on artificial neural networks and support vector machines. It also describes the optimization of combustion parameters using genetic algorithms or ant colony algorithms, an online coal optimization system, etc. Accordingly, the book offers a unique guide for researchers in the areas of combustion optimization, NOx emission control, energy and power engineering, and chemical engineering. | ||
| 650 | 0 | |a Energy efficiency. | |
| 650 | 0 | |a Thermodynamics. | |
| 650 | 0 | |a Heat engineering. | |
| 650 | 0 | |a Heat transfer. | |
| 650 | 0 | |a Mass transfer. | |
| 650 | 0 | |a Energy systems. | |
| 650 | 0 | |a Chemical engineering. | |
| 650 | 0 | |a Computational intelligence. | |
| 856 | 4 | 0 | |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-981-10-7875-0 |y Vzdialený prístup pre registrovaných používateľov |
| 910 | |b ZE05033 | ||
| 919 | |a 978-981-10-7875-0 | ||
| 974 | |a andrea.lebedova |f Elektronické zdroje | ||
| 992 | |a SUD | ||
| 999 | |c 273522 |d 273522 | ||

