Deep Belief Nets in C++ and CUDA C: Volume 3 Convolutional Nets /

Discover the essential building blocks of a common and powerful form of deep belief network: convolutional nets. This book shows you how the structure of these elegant models is much closer to that of human brains than traditional neural networks; they have a 'thought process' that is capa...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Masters, Timothy (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Berkeley, CA : Apress, 2018.
Vydání:1st ed. 2018.
Témata:
ISBN:9781484237212
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618115606.0
007 cr nn 008mamaa
008 180704s2018 xxu| s |||| 0|eng d
020 |a 9781484237212 
024 7 |a 10.1007/978-1-4842-3721-2  |2 doi 
035 |a CVTIDW08275 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Masters, Timothy.  |4 aut 
245 1 0 |a Deep Belief Nets in C++ and CUDA C: Volume 3  |h [electronic resource] :  |b Convolutional Nets /  |c by Timothy Masters. 
250 |a 1st ed. 2018. 
260 1 |a Berkeley, CA :  |b Apress,  |c 2018. 
300 |a XII, 176 p. 13 illus.  |b online resource. 
500 |a Professional and Applied Computing  
505 0 |a 1. Feedforward Networks -- 2. Programming Algorithms -- 3. CUDA Code -- 4. CONVNET Manual. 
516 |a text file PDF 
520 |a Discover the essential building blocks of a common and powerful form of deep belief network: convolutional nets. This book shows you how the structure of these elegant models is much closer to that of human brains than traditional neural networks; they have a 'thought process' that is capable of learning abstract concepts built from simpler primitives. These models are especially useful for image processing applications. At each step Deep Belief Nets in C++ and CUDA C: Volume 3 presents intuitive motivation, a summary of the most important equations relevant to the topic, and concludes with highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. Source code for all routines presented in the book, and the executable CONVNET program which implements these algorithms, are available for free download. You will: Discover convolutional nets and how to use them Build deep feedforward nets using locally connected layers, pooling layers, and softmax outputs Master the various programming algorithms required Carry out multi-threaded gradient computations and memory allocations for this threading Work with CUDA code implementations of all core computations, including layer activations and gradient calculations Make use of the CONVNET program and manual to explore convolutional nets and case studies. 
650 0 |a Artificial intelligence. 
650 0 |a Programming languages (Electronic computers). 
650 0 |a Big data. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-1-4842-3721-2  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE05555 
919 |a 978-1-4842-3721-2 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 273510  |d 273510