Binomial Ideals

This textbook provides an introduction to the combinatorial and statistical aspects of commutative algebra with an emphasis on binomial ideals. In addition to thorough coverage of the basic concepts and theory, it explores current trends, results, and applications of binomial ideals to other areas o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Herzog, Jürgen (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Cham : Springer International Publishing, 2018.
Ausgabe:1st ed. 2018.
Schriftenreihe:Graduate Texts in Mathematics, 279
Schlagworte:
ISBN:9783319953496
ISSN:0072-5285 ;
Online-Zugang: Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618115528.0
007 cr nn 008mamaa
008 180928s2018 gw | s |||| 0|eng d
020 |a 9783319953496 
024 7 |a 10.1007/978-3-319-95349-6  |2 doi 
035 |a CVTIDW07232 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Herzog, Jürgen.  |4 aut 
245 1 0 |a Binomial Ideals  |h [electronic resource] /  |c by Jürgen Herzog, Takayuki Hibi, Hidefumi Ohsugi. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XIX, 321 p. 55 illus., 4 illus. in color.  |b online resource. 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 279 
500 |a Mathematics and Statistics  
505 0 |a Part I: Basic Concepts -- Polynomial Rings and Gröbner Bases -- Review of Commutative Algebra -- Part II:Binomial Ideals and Convex Polytopes -- Introduction to Binomial Ideals -- Convex Polytopes and Unimodular Triangulations -- Part III. Applications in Combinatorics and Statistics- Edge Polytopes and Edge Rings -- Join-Meet Ideals of Finite Lattices -- Binomial Edge Ideals and Related Ideals -- Ideals Generated by 2-Minors -- Statistics -- References -- Index. 
516 |a text file PDF 
520 |a This textbook provides an introduction to the combinatorial and statistical aspects of commutative algebra with an emphasis on binomial ideals. In addition to thorough coverage of the basic concepts and theory, it explores current trends, results, and applications of binomial ideals to other areas of mathematics. The book begins with a brief, self-contained overview of the modern theory of Gröbner bases and the necessary algebraic and homological concepts from commutative algebra. Binomials and binomial ideals are then considered in detail, along with a short introduction to convex polytopes. Chapters in the remainder of the text can be read independently and explore specific aspects of the theory of binomial ideals, including edge rings and edge polytopes, join-meet ideals of finite lattices, binomial edge ideals, ideals generated by 2-minors, and binomial ideals arising from statistics. Each chapter concludes with a set of exercises and a list of related topics and results that will complement and offer a better understanding of the material presented. Binomial Ideals is suitable for graduate students in courses on commutative algebra, algebraic combinatorics, and statistics. Additionally, researchers interested in any of these areas but familiar with only the basic facts of commutative algebra will find it to be a valuable resource. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Convex geometry . 
650 0 |a Discrete geometry. 
650 0 |a Combinatorics. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-95349-6  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE04512 
919 |a 978-3-319-95349-6 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 273394  |d 273394