Computational Intelligence for Pattern Recognition

The book presents a comprehensive and up-to-date review of fuzzy pattern recognition. It carefully discusses a range of methodological and algorithmic issues, as well as implementations and case studies, and identifies the best design practices, assesses business models and practices of pattern reco...

Celý popis

Uloženo v:
Podrobná bibliografie
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Edice:Studies in Computational Intelligence, 777
Témata:
ISBN:9783319896298
ISSN:1860-949X ;
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618115501.0
007 cr nn 008mamaa
008 180430s2018 gw | s |||| 0|eng d
020 |a 9783319896298 
024 7 |a 10.1007/978-3-319-89629-8  |2 doi 
035 |a CVTIDW07843 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
245 1 0 |a Computational Intelligence for Pattern Recognition  |h [electronic resource] /  |c edited by Witold Pedrycz, Shyi-Ming Chen. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a VIII, 428 p. 151 illus., 118 illus. in color.  |b online resource. 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 777 
500 |a Engineering  
505 0 |a Robust Constrained Concept Factorization -- An Automatic Cycling Performance Measurement System Based on ANFIS -- Fuzzy Classifiers Learned Through SVMs With Application to Specific Object Detection and Shape Extraction Using an RGB-D Camera -- Low Cost Parkinson's Disease Early Detection and Classification Based on Voice and Electromyography Signal -- Particle Swarm Optimization Based HMM Parameter Estimation for Spectrum Sensing in Cognitive Radio System -- Improving Sparse Representation-Based Classification Using Local Principal Component Analysis -- Fuzzy Choquet Integration of Deep Convolutional Neural Networks for Remote Sensing -- Computational Intelligence for Pattern Recognition in EEG Signals -- Neural Network Based Physical Disorder Recognition for Elderly Health Care -- Deep Neural Networks for Structured Data -- Recognizing Subtle Micro-Facial Expressions Using Fuzzy Histogram of Optical Flow Orientations and Feature Selection Methods -- Granular Computing Techniques for Bioinformatics Pattern Recognition Problems in Non-Metric Spaces -- Multi-Classifier-Systems: Architectures, Algorithms and Applications -- Learning Label Dependency and Label Preference Relations in Graded Multi-Label Classification -- Improved Deep Neural Network Object Tracking System for Applications in Home Robotics. 
516 |a text file PDF 
520 |a The book presents a comprehensive and up-to-date review of fuzzy pattern recognition. It carefully discusses a range of methodological and algorithmic issues, as well as implementations and case studies, and identifies the best design practices, assesses business models and practices of pattern recognition in real-world applications in industry, health care, administration, and business. Since the inception of fuzzy sets, fuzzy pattern recognition with its methodology, algorithms, and applications, has offered new insights into the principles and practice of pattern classification. Computational intelligence (CI) establishes a comprehensive framework aimed at fostering the paradigm of pattern recognition. The collection of contributions included in this book offers a representative overview of the advances in the area, with timely, in-depth and comprehensive material on the conceptually appealing and practically sound methodology and practices of CI-based pattern recognition. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-89629-8  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE05123 
919 |a 978-3-319-89629-8 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 273312  |d 273312