Dynamic Parameter Adaptation for Meta-Heuristic Optimization Algorithms Through Type-2 Fuzzy Logic

In this book, a methodology for parameter adaptation in meta-heuristic op-timization methods is proposed. This methodology is based on using met-rics about the population of the meta-heuristic methods, to decide through a fuzzy inference system the best parameter values that were carefully se-lected...

Celý popis

Uložené v:
Podrobná bibliografia
Hlavný autor: Olivas, Frumen (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:English
Vydavateľské údaje: Cham : Springer International Publishing, 2018.
Vydanie:1st ed. 2018.
Edícia:SpringerBriefs in Computational Intelligence,
Predmet:
ISBN:9783319708515
ISSN:2625-3704
On-line prístup: Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618115447.0
007 cr nn 008mamaa
008 180314s2018 gw | s |||| 0|eng d
020 |a 9783319708515 
024 7 |a 10.1007/978-3-319-70851-5  |2 doi 
035 |a CVTIDW08603 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Olivas, Frumen.  |4 aut 
245 1 0 |a Dynamic Parameter Adaptation for Meta-Heuristic Optimization Algorithms Through Type-2 Fuzzy Logic  |h [electronic resource] /  |c by Frumen Olivas, Fevrier Valdez, Oscar Castillo, Patricia Melin. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a VII, 105 p. 25 illus.  |b online resource. 
490 1 |a SpringerBriefs in Computational Intelligence,  |x 2625-3704 
500 |a Engineering  
505 0 |a Introduction -- Theory and Background -- Problems Statement -- Methodology -- Simulation Results -- Statistical Analysis and Comparison of Results. 
516 |a text file PDF 
520 |a In this book, a methodology for parameter adaptation in meta-heuristic op-timization methods is proposed. This methodology is based on using met-rics about the population of the meta-heuristic methods, to decide through a fuzzy inference system the best parameter values that were carefully se-lected to be adjusted. With this modification of parameters we want to find a better model of the behavior of the optimization method, because with the modification of parameters, these will affect directly the way in which the global or local search are performed. Three different optimization methods were used to verify the improve-ment of the proposed methodology. In this case the optimization methods are: PSO (Particle Swarm Optimization), ACO (Ant Colony Optimization) and GSA (Gravitational Search Algorithm), where some parameters are se-lected to be dynamically adjusted, and these parameters have the most im-pact in the behavior of each optimization method. Simulation results show that the proposed methodology helps to each optimization method in obtaining better results than the results obtained by the original method without parameter adjustment. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-70851-5  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE05883 
919 |a 978-3-319-70851-5 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 273271  |d 273271