Computational Diffusion MRI MICCAI Workshop, Québec, Canada, September 2017 /

This volume presents the latest developments in the highly active and rapidly growing field of diffusion MRI. The reader will find numerous contributions covering a broad range of topics, from the mathematical foundations of the diffusion process and signal generation, to new computational methods a...

Celý popis

Uložené v:
Podrobná bibliografia
Médium: Elektronický zdroj E-kniha
Jazyk:English
Vydavateľské údaje: Cham : Springer International Publishing, 2018.
Vydanie:1st ed. 2018.
Edícia:Mathematics and Visualization,
Predmet:
ISBN:9783319738390
ISSN:1612-3786
On-line prístup: Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618115439.0
007 cr nn 008mamaa
008 180402s2018 gw | s |||| 0|eng d
020 |a 9783319738390 
024 7 |a 10.1007/978-3-319-73839-0  |2 doi 
035 |a CVTIDW07840 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
245 1 0 |a Computational Diffusion MRI  |h [electronic resource] :  |b MICCAI Workshop, Québec, Canada, September 2017 /  |c edited by Enrico Kaden, Francesco Grussu, Lipeng Ning, Chantal M. W. Tax, Jelle Veraart. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XI, 245 p. 82 illus., 69 illus. in color.  |b online resource. 
490 1 |a Mathematics and Visualization,  |x 1612-3786 
500 |a Mathematics and Statistics  
505 0 |a Part I Data Acquisition and Modeling: Estimating Tissue Microstructure using Diffusion-Weighted Magnetic Resonance Spectroscopy of Brain Metabolites by Marco Palombo -- (k, q)-Compressed Sensing for dMRI with Joint Spatial-Angular Sparsity Prior by Evan Schwab et al -- Spatio-Temporal dMRI Acquisition Design: Reducing the Number of qτ Samples Through a Relaxed Probabilistic Model by Patryk Filipiak et al -- A Generalized SMT-Based Framework for Diffusion MRI Microstructural Model Estimation by Mauro Zucchelli et al -- Part II Image Postprocessing: Diffusion Specific Segmentation: Skull Stripping with Diffusion MRIData Alone by Robert I. Reid et al -- Diffeomorphic Registration of Diffusion Mean Apparent Propagator Fields Using Dynamic Programming on a Minimum Spanning Tree by K ́evin Ginsburger et al -- Diffusion Orientation Histograms (DOH) for Diffusion Weighted Image Analysis by Laurent Chauvin et al -- Part III Tractography and Connectivity: Learning a Single Step of Streamline Tractography Based on Neural Networks by Daniel Jörgens et al -- Probabilistic Tractography for Complex Fiber Orientations with Automatic Model Selection by Edwin Versteeg et al -- Bundle-Specific Tractography by Francois Rheault et al -- A Sheet Probability Index from Diffusion Tensor Imaging by Michael Ankele et al -- Recovering Missing Connections in Diffusion Weighted MRI Using Matrix Completion by Chendi Wang et al -- Brain Parcellation and Connectivity Mapping Using Wasserstein Geometry by Hamza Farooq et al -- Exploiting Machine Learning Principles for Assessing the Fingerprinting Potential of Connectivity Features by Silvia Obertino et al -- Part IV Clinical Applications: Fiber-Flux Diffusion Density for White Matter Tracts Analysis: Application to Mild Anomalies Localization in Contact Sports Players by Itay Benou et al -- Longitudinal Analysis Framework of DWI Data for Reconstructing Structural Brain Networks with Application to Multiple Sclerosis by Thalis Charalambous et al -- Multi-Modal Analysis of Genetically-Related Subjects Using SIFT Descriptors in Brain MRI by Kuldeep Kumar et al -- VERDICT Prostate Parameter Estimation with AMICO by Elisenda Bonet-Carne et al. 
516 |a text file PDF 
520 |a This volume presents the latest developments in the highly active and rapidly growing field of diffusion MRI. The reader will find numerous contributions covering a broad range of topics, from the mathematical foundations of the diffusion process and signal generation, to new computational methods and estimation techniques for the in-vivo recovery of microstructural and connectivity features, as well as frontline applications in neuroscience research and clinical practice. These proceedings contain the papers presented at the 2017 MICCAI Workshop on Computational Diffusion MRI (CDMRI'17) held in Québec, Canada on September 10, 2017, sharing new perspectives on the most recent research challenges for those currently working in the field, but also offering a valuable starting point for anyone interested in learning computational techniques in diffusion MRI. This book includes rigorous mathematical derivations, a large number of rich, full-colour visualisations and clinically relevant results. As such, it will be of interest to researchers and practitioners in the fields of computer science, MRI physics and applied mathematics. 
650 0 |a Biomathematics. 
650 0 |a Statistics . 
650 0 |a Computer mathematics. 
650 0 |a Bioinformatics. 
650 0 |a Optical data processing. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-73839-0  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE05120 
919 |a 978-3-319-73839-0 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 273247  |d 273247