Colored Discrete Spaces Higher Dimensional Combinatorial Maps and Quantum Gravity /

This book provides a number of combinatorial tools that allow a systematic study of very general discrete spaces involved in the context of discrete quantum gravity. In any dimension D, we can discretize Euclidean gravity in the absence of matter over random discrete spaces obtained by gluing famili...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Lionni, Luca (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Edice:Springer Theses, Recognizing Outstanding Ph.D. Research,
Témata:
ISBN:9783319960234
ISSN:2190-5053
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618115438.0
007 cr nn 008mamaa
008 180801s2018 gw | s |||| 0|eng d
020 |a 9783319960234 
024 7 |a 10.1007/978-3-319-96023-4  |2 doi 
035 |a CVTIDW07744 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Lionni, Luca.  |4 aut 
245 1 0 |a Colored Discrete Spaces  |h [electronic resource] :  |b Higher Dimensional Combinatorial Maps and Quantum Gravity /  |c by Luca Lionni. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XVIII, 218 p. 107 illus., 98 illus. in color.  |b online resource. 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
500 |a Physics and Astronomy  
505 0 |a Colored Simplices and Edge-Colored Graphs -- Bijective Methods -- Properties of Stacked Maps -- Summary and Outlook. 
516 |a text file PDF 
520 |a This book provides a number of combinatorial tools that allow a systematic study of very general discrete spaces involved in the context of discrete quantum gravity. In any dimension D, we can discretize Euclidean gravity in the absence of matter over random discrete spaces obtained by gluing families of polytopes together in all possible ways. These spaces are then classified according to their curvature. In D=2, it results in a theory of random discrete spheres, which converge in the continuum limit towards the Brownian sphere, a random fractal space interpreted as a quantum random space-time. In this limit, the continuous Liouville theory of D=2 quantum gravity is recovered. Previous results in higher dimension regarded triangulations, converging towards a continuum random tree, or gluings of simple building blocks of small sizes, for which multi-trace matrix model results are recovered in any even dimension. In this book, the author develops a bijection with stacked two-dimensional discrete surfaces for the most general colored building blocks, and details how it can be used to classify colored discrete spaces according to their curvature. The way in which this combinatorial problem arrises in discrete quantum gravity and random tensor models is discussed in detail. 
650 0 |a Physics. 
650 0 |a Gravitation. 
650 0 |a Geometry. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-96023-4  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE05024 
919 |a 978-3-319-96023-4 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 273243  |d 273243