Application of FPGA to Real‐Time Machine Learning Hardware Reservoir Computers and Software Image Processing /

This book lies at the interface of machine learning - a subfield of computer science that develops algorithms for challenging tasks such as shape or image recognition, where traditional algorithms fail - and photonics - the physical science of light, which underlies many of the optical communication...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Antonik, Piotr (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Edice:Springer Theses, Recognizing Outstanding Ph.D. Research,
Témata:
ISBN:9783319910536
ISSN:2190-5053
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This book lies at the interface of machine learning - a subfield of computer science that develops algorithms for challenging tasks such as shape or image recognition, where traditional algorithms fail - and photonics - the physical science of light, which underlies many of the optical communications technologies used in our information society. It provides a thorough introduction to reservoir computing and field-programmable gate arrays (FPGAs). Recently, photonic implementations of reservoir computing (a machine learning algorithm based on artificial neural networks) have made a breakthrough in optical computing possible. In this book, the author pushes the performance of these systems significantly beyond what was achieved before. By interfacing a photonic reservoir computer with a high-speed electronic device (an FPGA), the author successfully interacts with the reservoir computer in real time, allowing him to considerably expand its capabilities and range of possible applications. Furthermore, the author draws on his expertise in machine learning and FPGA programming to make progress on a very different problem, namely the real-time image analysis of optical coherence tomography for atherosclerotic arteries.
Popis jednotky:Physics and Astronomy
Fyzický popis:XXII, 171 p. 68 illus., 8 illus. in color. online resource.
ISBN:9783319910536
ISSN:2190-5053