Assessing and Improving Prediction and Classification Theory and Algorithms in C++ /

Carry out practical, real-life assessments of the performance of prediction and classification models written in C++. This book discusses techniques for improving the performance of such models by intelligent resampling of training/testing data, combining multiple models into sophisticated committee...

Celý popis

Uložené v:
Podrobná bibliografia
Hlavný autor: Masters, Timothy (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:English
Vydavateľské údaje: Berkeley, CA : Apress, 2018.
Vydanie:1st ed. 2018.
Predmet:
ISBN:9781484233368
On-line prístup: Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618115230.0
007 cr nn 008mamaa
008 171220s2018 xxu| s |||| 0|eng d
020 |a 9781484233368 
024 7 |a 10.1007/978-1-4842-3336-8  |2 doi 
035 |a CVTIDW06982 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Masters, Timothy.  |4 aut 
245 1 0 |a Assessing and Improving Prediction and Classification  |h [electronic resource] :  |b Theory and Algorithms in C++ /  |c by Timothy Masters. 
250 |a 1st ed. 2018. 
260 1 |a Berkeley, CA :  |b Apress,  |c 2018. 
300 |a XX, 517 p. 26 illus., 8 illus. in color.  |b online resource. 
500 |a Professional and Applied Computing  
505 0 |a 1. Assessment of Numeric Predictions -- 2. Assessment of Class Predictions -- 3. Resampling for Assessing Parameter Estimates -- 4. Resampling for Assessing Prediction and Classification -- 5. Miscellaneous Resampling Techniques -- 6. Combining Numeric Predictions -- 7. Combining Classification Models -- 8. Gaiting Methods -- 9. Information and Entropy -- References. 
516 |a text file PDF 
520 |a Carry out practical, real-life assessments of the performance of prediction and classification models written in C++. This book discusses techniques for improving the performance of such models by intelligent resampling of training/testing data, combining multiple models into sophisticated committees, and making use of exogenous information to dynamically choose modeling methodologies. Rigorous statistical techniques for computing confidence in predictions and decisions receive extensive treatment. Finally, the last part of the book is devoted to the use of information theory in evaluating and selecting useful predictors. Special attention is paid to Schreiber's Information Transfer, a recent generalization of Grainger Causality. Well commented C++ code is given for every algorithm and technique. You will: Discover the hidden pitfalls that lurk in the model development process Work with some of the most powerful model enhancement algorithms that have emerged recently Effectively use and incorporate the C++ code in your own data analysis projects Combine classification models to enhance your projects. 
650 0 |a Big data. 
650 0 |a Artificial intelligence. 
650 0 |a Mathematical statistics. 
650 0 |a Statistics . 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-1-4842-3336-8  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE04262 
919 |a 978-1-4842-3336-8 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 272853  |d 272853