Applied Compositional Data Analysis With Worked Examples in R /

This book presents the statistical analysis of compositional data using the log-ratio approach. It includes a wide range of classical and robust statistical methods adapted for compositional data analysis, such as supervised and unsupervised methods like PCA, correlation analysis, classification and...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Filzmoser, Peter (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Edice:Springer Series in Statistics,
Témata:
ISBN:9783319964225
ISSN:0172-7397
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618115217.0
007 cr nn 008mamaa
008 181103s2018 gw | s |||| 0|eng d
020 |a 9783319964225 
024 7 |a 10.1007/978-3-319-96422-5  |2 doi 
035 |a CVTIDW06890 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Filzmoser, Peter.  |4 aut 
245 1 0 |a Applied Compositional Data Analysis  |h [electronic resource] :  |b With Worked Examples in R /  |c by Peter Filzmoser, Karel Hron, Matthias Templ. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XVII, 280 p. 74 illus., 57 illus. in color.  |b online resource. 
490 1 |a Springer Series in Statistics,  |x 0172-7397 
500 |a Mathematics and Statistics  
505 0 |a Preface -- Acknowledgements -- Compositional data as a methodological concept -- Analyzing compositional data using R -- Geometrical properties of compositional data -- Exploratory data analysis and visualization -- First steps for a statistical analysis -- Cluster analysis -- Principal component analysis -- Correlation analysis -- Discriminant analysis -- Regression analysis -- Methods for high-dimensional compositional data -- Compositional tables -- Preprocessing issues -- Index.-. 
516 |a text file PDF 
520 |a This book presents the statistical analysis of compositional data using the log-ratio approach. It includes a wide range of classical and robust statistical methods adapted for compositional data analysis, such as supervised and unsupervised methods like PCA, correlation analysis, classification and regression. In addition, it considers special data structures like high-dimensional compositions and compositional tables. The methodology introduced is also frequently compared to methods which ignore the specific nature of compositional data. It focuses on practical aspects of compositional data analysis rather than on detailed theoretical derivations, thus issues like graphical visualization and preprocessing (treatment of missing values, zeros, outliers and similar artifacts) form an important part of the book. Since it is primarily intended for researchers and students from applied fields like geochemistry, chemometrics, biology and natural sciences, economics, and social sciences, all the proposed methods are accompanied by worked-out examples in R using the package robCompositions. 
650 0 |a Statistics . 
650 0 |a Geochemistry. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-96422-5  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE04170 
919 |a 978-3-319-96422-5 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 272813  |d 272813