Applied Linear Algebra

This textbook develops the essential tools of linear algebra, with the goal of imparting technique alongside contextual understanding. Applications go hand-in-hand with theory, each reinforcing and explaining the other. This approach encourages students to develop not only the technical proficiency...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Olver, Peter J. (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:2nd ed. 2018.
Edice:Undergraduate Texts in Mathematics,
Témata:
ISBN:9783319910413
ISSN:0172-6056
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618115213.0
007 cr nn 008mamaa
008 180530s2018 gw | s |||| 0|eng d
020 |a 9783319910413 
024 7 |a 10.1007/978-3-319-91041-3  |2 doi 
035 |a CVTIDW06897 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Olver, Peter J.  |4 aut 
245 1 0 |a Applied Linear Algebra  |h [electronic resource] /  |c by Peter J. Olver, Chehrzad Shakiban. 
250 |a 2nd ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XXV, 679 p. 130 illus., 88 illus. in color.  |b online resource. 
490 1 |a Undergraduate Texts in Mathematics,  |x 0172-6056 
500 |a Mathematics and Statistics  
505 0 |a Preface -- 1. Linear Algebraic Systems -- 2. Vector Spaces and Bases -- 3. Inner Products and Norms -- 4. Minimization and Least Squares Approximation -- 5. Orthogonality -- 6. Equilibrium -- 7. Linearity -- 8. Eigenvalues -- 9. Linear Dynamical Systems -- 10. Iteration of Linear Systems -- 11. Boundary Value Problems in One Dimension -- References -- Index. 
516 |a text file PDF 
520 |a This textbook develops the essential tools of linear algebra, with the goal of imparting technique alongside contextual understanding. Applications go hand-in-hand with theory, each reinforcing and explaining the other. This approach encourages students to develop not only the technical proficiency needed to go on to further study, but an appreciation for when, why, and how the tools of linear algebra can be used across modern applied mathematics. Providing an extensive treatment of essential topics such as Gaussian elimination, inner products and norms, and eigenvalues and singular values, this text can be used for an in-depth first course, or an application-driven second course in linear algebra. In this second edition, applications have been updated and expanded to include numerical methods, dynamical systems, data analysis, and signal processing, while the pedagogical flow of the core material has been improved. Throughout, the text emphasizes the conceptual connections between each application and the underlying linear algebraic techniques, thereby enabling students not only to learn how to apply the mathematical tools in routine contexts, but also to understand what is required to adapt to unusual or emerging problems. No previous knowledge of linear algebra is needed to approach this text, with single-variable calculus as the only formal prerequisite. However, the reader will need to draw upon some mathematical maturity to engage in the increasing abstraction inherent to the subject. Once equipped with the main tools and concepts from this book, students will be prepared for further study in differential equations, numerical analysis, data science and statistics, and a broad range of applications. The first author's text, Introduction to Partial Differential Equations, is an ideal companion volume, forming a natural extension of the linear mathematical methods developed here. 
650 0 |a Matrix theory. 
650 0 |a Algebra. 
650 0 |a Mathematical physics. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-91041-3  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE04177 
919 |a 978-3-319-91041-3 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 272801  |d 272801