Bilinear Regression Analysis An Introduction /

This book expands on the classical statistical multivariate analysis theory by focusing on bilinear regression models, a class of models comprising the classical growth curve model and its extensions. In order to analyze the bilinear regression models in an interpretable way, concepts from linear mo...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: von Rosen, Dietrich (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Edice:Lecture Notes in Statistics, 220
Témata:
ISBN:9783319787848
ISSN:0930-0325 ;
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618115154.0
007 cr nn 008mamaa
008 180802s2018 gw | s |||| 0|eng d
020 |a 9783319787848 
024 7 |a 10.1007/978-3-319-78784-8  |2 doi 
035 |a CVTIDW07228 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a von Rosen, Dietrich.  |4 aut 
245 1 0 |a Bilinear Regression Analysis  |h [electronic resource] :  |b An Introduction /  |c by Dietrich von Rosen. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XIII, 468 p. 42 illus.  |b online resource. 
490 1 |a Lecture Notes in Statistics,  |x 0930-0325 ;  |v 220 
500 |a Mathematics and Statistics  
505 0 |a Preface -- Introduction -- The Basic Ideas of Obtaining MLEs: A Known Dispersion -- The Basic Ideas of Obtaining MLEs: Unknown Dispersion -- Basic Properties of Estimators -- Density Approximations -- Residuals -- Testing Hypotheses -- Influential Observations -- Appendices -- Indices. 
516 |a text file PDF 
520 |a This book expands on the classical statistical multivariate analysis theory by focusing on bilinear regression models, a class of models comprising the classical growth curve model and its extensions. In order to analyze the bilinear regression models in an interpretable way, concepts from linear models are extended and applied to tensor spaces. Further, the book considers decompositions of tensor products into natural subspaces, and addresses maximum likelihood estimation, residual analysis, influential observation analysis and testing hypotheses, where properties of estimators such as moments, asymptotic distributions or approximations of distributions are also studied. Throughout the text, examples and several analyzed data sets illustrate the different approaches, and fresh insights into classical multivariate analysis are provided. This monograph is of interest to researchers and Ph.D. students in mathematical statistics, signal processing and other fields where statistical multivariate analysis is utilized. It can also be used as a text for second graduate-level courses on multivariate analysis. 
650 0 |a Statistics . 
650 0 |a Matrix theory. 
650 0 |a Algebra. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-78784-8  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE04508 
919 |a 978-3-319-78784-8 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 272742  |d 272742