Algorithms for Solving Common Fixed Point Problems

This book details approximate solutions to common fixed point problems and convex feasibility problems in the presence of perturbations. Convex feasibility problems search for a common point of a finite collection of subsets in a Hilbert space; common fixed point problems pursue a common fixed point...

Full description

Saved in:
Bibliographic Details
Main Author: Zaslavski, Alexander J. (Author)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing, 2018.
Edition:1st ed. 2018.
Series:Springer Optimization and Its Applications, 132
Subjects:
ISBN:9783319774374
ISSN:1931-6828 ;
Online Access: Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618115131.0
007 cr nn 008mamaa
008 180502s2018 gw | s |||| 0|eng d
020 |a 9783319774374 
024 7 |a 10.1007/978-3-319-77437-4  |2 doi 
035 |a CVTIDW06764 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Zaslavski, Alexander J.  |4 aut 
245 1 0 |a Algorithms for Solving Common Fixed Point Problems  |h [electronic resource] /  |c by Alexander J. Zaslavski. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a VIII, 316 p.  |b online resource. 
490 1 |a Springer Optimization and Its Applications,  |x 1931-6828 ;  |v 132 
500 |a Mathematics and Statistics  
505 0 |a 1. Introduction -- 2. Iterative methods in metric spaces -- 3. Dynamic string-averaging methods in normed spaces -- 4. Dynamic string-maximum methods in metric spaces -- 5. Abstract version of CARP algorithm -- 6. Proximal point algorithm -- 7. Dynamic string-averaging proximal point algorithm -- 8. Convex feasibility problems. 
516 |a text file PDF 
520 |a This book details approximate solutions to common fixed point problems and convex feasibility problems in the presence of perturbations. Convex feasibility problems search for a common point of a finite collection of subsets in a Hilbert space; common fixed point problems pursue a common fixed point of a finite collection of self-mappings in a Hilbert space. A variety of algorithms are considered in this book for solving both types of problems, the study of which has fueled a rapidly growing area of research. This monograph is timely and highlights the numerous applications to engineering, computed tomography, and radiation therapy planning. Totaling eight chapters, this book begins with an introduction to foundational material and moves on to examine iterative methods in metric spaces. The dynamic string-averaging methods for common fixed point problems in normed space are analyzed in Chapter 3. Dynamic string methods, for common fixed point problems in a metric space are introduced and discussed in Chapter 4. Chapter 5 is devoted to the convergence of an abstract version of the algorithm which has been called component-averaged row projections (CARP). Chapter 6 studies a proximal algorithm for finding a common zero of a family of maximal monotone operators. Chapter 7 extends the results of Chapter 6 for a dynamic string-averaging version of the proximal algorithm. In Chapters 8 subgradient projections algorithms for convex feasibility problems are examined for infinite dimensional Hilbert spaces. . 
650 0 |a Calculus of variations. 
650 0 |a Operator theory. 
650 0 |a Numerical analysis. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-77437-4  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE04044 
919 |a 978-3-319-77437-4 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 272675  |d 272675