Applied Natural Language Processing with Python Implementing Machine Learning and Deep Learning Algorithms for Natural Language Processing /

Learn to harness the power of AI for natural language processing, performing tasks such as spell check, text summarization, document classification, and natural language generation. Along the way, you will learn the skills to implement these methods in larger infrastructures to replace existing code...

Full description

Saved in:
Bibliographic Details
Main Author: Beysolow II, Taweh (Author)
Format: Electronic eBook
Language:English
Published: Berkeley, CA : Apress, 2018.
Edition:1st ed. 2018.
Subjects:
ISBN:9781484237335
Online Access: Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618115105.0
007 cr nn 008mamaa
008 180911s2018 xxu| s |||| 0|eng d
020 |a 9781484237335 
024 7 |a 10.1007/978-1-4842-3733-5  |2 doi 
035 |a CVTIDW06900 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Beysolow II, Taweh.  |4 aut 
245 1 0 |a Applied Natural Language Processing with Python   |h [electronic resource] :  |b Implementing Machine Learning and Deep Learning Algorithms for Natural Language Processing /  |c by Taweh Beysolow II. 
250 |a 1st ed. 2018. 
260 1 |a Berkeley, CA :  |b Apress,  |c 2018. 
300 |a XV, 150 p. 32 illus.  |b online resource. 
500 |a Professional and Applied Computing  
505 0 |a Chapter 1: What is Natural Language Processing? -- Chapter 2: Review of Machine Learning -- Chapter 3: Working with Raw Text -- Chapter 4: Word Embeddings and their application -- Chapter 5: Using Machine Learning with Natural Language Processing. 
516 |a text file PDF 
520 |a Learn to harness the power of AI for natural language processing, performing tasks such as spell check, text summarization, document classification, and natural language generation. Along the way, you will learn the skills to implement these methods in larger infrastructures to replace existing code or create new algorithms. Applied Natural Language Processing with Python starts with reviewing the necessary machine learning concepts before moving onto discussing various NLP problems. After reading this book, you will have the skills to apply these concepts in your own professional environment. You will: Utilize various machine learning and natural language processing libraries such as TensorFlow, Keras, NLTK, and Gensim Manipulate and preprocess raw text data in formats such as .txt and .pdf Strengthen your skills in data science by learning both the theory and the application of various algorithms . 
650 0 |a Artificial intelligence. 
650 0 |a Python (Computer program language). 
650 0 |a Open source software. 
650 0 |a Computer programming. 
650 0 |a Big data. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-1-4842-3733-5  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE04180 
919 |a 978-1-4842-3733-5 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 272595  |d 272595