Automatic Tuning of Compilers Using Machine Learning
This book explores break-through approaches to tackling and mitigating the well-known problems of compiler optimization using design space exploration and machine learning techniques. It demonstrates that not all the optimization passes are suitable for use within an optimization sequence and that,...
Uloženo v:
| Hlavní autor: | |
|---|---|
| Médium: | Elektronický zdroj E-kniha |
| Jazyk: | angličtina |
| Vydáno: |
Cham :
Springer International Publishing,
2018.
|
| Vydání: | 1st ed. 2018. |
| Edice: | PoliMI SpringerBriefs,
|
| Témata: | |
| ISBN: | 9783319714899 |
| ISSN: | 2282-2577 |
| On-line přístup: |
|
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Obsah:
- Background
- DSE Approach for Compiler Passes
- Addressing the Selection Problem of Passes using ML
- Intermediate Speedup Prediction for the Phase-ordering Problem
- Full-sequence Speedup Prediction for the Phase-ordering Problem
- Concluding Remarks. .

